題目列表(包括答案和解析)
3 |
2 |
9 |
8 |
某市的老城區(qū)改造建筑用地平面示意圖如圖所示.經(jīng)規(guī)劃調(diào)研確定,老城區(qū)改造規(guī)劃建筑用地區(qū)域可近似為半徑是R的圓面.該圓的內(nèi)接四邊形ABCD是原老城區(qū)建筑用地,測量可知邊界AB=AD=4萬米,BC=6萬米,CD=2萬米.
(I)請計算原老城區(qū)建筑用地ABCD的面積及圓面的半徑R的值;
(II)因地理條件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調(diào)整.為了提高老城區(qū)改造建筑用地的利用率,請在上設(shè)計一點P,使得老城區(qū)改造的新建筑用地APCD的面積最大,并求出其最大值.
某市的老城區(qū)改造建筑用地平面示意圖如圖所示.經(jīng)規(guī)劃調(diào)研確定,老城區(qū)改造規(guī)劃建筑用地區(qū)域可近似為半徑是R的圓面.該圓的內(nèi)接四邊形ABCD是原老城區(qū)建筑用地,測量可知邊界AB=AD=4萬米,BC=6萬米,CD=2萬米.
(I)請計算原老城區(qū)建筑用地ABCD的面積及圓面的半徑R的值;
(II)因地理條件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調(diào)整.為了提高老城區(qū)改造建筑用地的利用率,請在上設(shè)計一點P,使得老城區(qū)改造的新建筑用地APCD的面積最大,并求出其最大值.
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當時,
令,得
時,的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
當,即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,
當且,即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為
當,即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為
所以在區(qū)間上的最大值為。
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.
(1)求數(shù)列的通項公式和數(shù)列的前n項和;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
第三問,
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
.
(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com