又點F是AC的中點.所以DB = EF = AA1 = BB1. 查看更多

 

題目列表(包括答案和解析)

在直角梯形ABCD中∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿對角線AC折起后如圖所示(點D記為點P),點P在平面ABC上的正投影E落在線段AB上,連接PB.若F是AC的中點,連接PF,EF.
(1)求證:AC⊥平面PEF.
(2)求直線PC與平面PAB所成的角的大。

查看答案和解析>>

在直角梯形ABCD中∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿對角線AC折起后如圖所示(點D記為點P),點P在平面ABC上的正投影E落在線段AB上,連接PB.若F是AC的中點,連接PF,EF.
(1)求證:AC⊥平面PEF.
(2)求直線PC與平面PAB所成的角的大小.

查看答案和解析>>

在直角梯形ABCD中∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿對角線AC折起后如圖所示(點D記為點P),點P在平面ABC上的正投影E落在線段AB上,連接PB.若F是AC的中點,連接PF,EF.
(1)求證:AC⊥平面PEF.
(2)求直線PC與平面PAB所成的角的大小.

查看答案和解析>>

如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

【解析】第一問:取AC中點F,連結OF、FB.∵F是AC的中點,O為CE的中點,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB

第二問中,當N是EM中點時,ON⊥平面ABDE。           ………7分

證明:取EM中點N,連結ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
2
,點F是PC的中點.
(Ⅰ)求證:PC⊥BD;
(Ⅱ)求BF與平面ABCD所成角的大;
(Ⅲ)若點E在棱PD上,當
PE
PD
為多少時二面角E-AC-D的大小為
π
6

查看答案和解析>>


同步練習冊答案