題目列表(包括答案和解析)
在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,
求⑴ ∠ADB的大。虎 BD的長(zhǎng).
【解析】本試題主要考查了三角形的余弦定理和正弦定理的運(yùn)用
第一問(wèn)中,∵cos∠ADC=
==-∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=∴ cos∠ADB=60°
第二問(wèn)中,結(jié)合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由= 得BD==5(+1)
解:⑴ ∵cos∠ADC=
==-,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=, ……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由= ……………………………9分
得BD==5(+1)
3 |
π |
4 |
π |
4 |
3 |
數(shù)列首項(xiàng),前項(xiàng)和滿(mǎn)足等式(常數(shù),……)
(1)求證:為等比數(shù)列;
(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.
(3)設(shè),求數(shù)列的前項(xiàng)和.
【解析】第一問(wèn)利用由得
兩式相減得
故時(shí),
從而又 即,而
從而 故
第二問(wèn)中, 又故為等比數(shù)列,通項(xiàng)公式為
第三問(wèn)中,
兩邊同乘以
利用錯(cuò)位相減法得到和。
(1)由得
兩式相減得
故時(shí),
從而 ………………3分
又 即,而
從而 故
對(duì)任意,為常數(shù),即為等比數(shù)列………………5分
(2) ……………………7分
又故為等比數(shù)列,通項(xiàng)公式為………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.
(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問(wèn)題的運(yùn)用。第一問(wèn)中,
易知,面。由此知:從而有又點(diǎn)是的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。
(1)過(guò)點(diǎn)作于點(diǎn),取的中點(diǎn),連。面面且相交于,面內(nèi)的直線(xiàn),面!3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點(diǎn)是的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn). …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD
已知,,
(Ⅰ)求的值;
(Ⅱ)求的值。
【解析】第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091219580151983901_ST.files/image002.png">,∴
∴或又∴
第二問(wèn)中原式=
=進(jìn)而得到結(jié)論。
(Ⅰ)解:∵∴
∴或……………………………………3分
又∴……………………………2分
(Ⅱ) 解:原式= ……………………2分
=…………2分
=
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com