4.證明不等式的方法靈活多樣.但比較法.綜合法.分析法仍是證明不等式的最基本方法.要依據(jù)題設.題斷的結構特點.內(nèi)在聯(lián)系.選擇適當?shù)淖C明方法.要熟悉各種證法中的推理思維.并掌握相應的步驟.技巧和語言特點.比較法的一般步驟是:作差(商)→變形→判斷符號(值).學科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

以下方法不能用于證明不等式的是( )
A.比較法
B.隨機抽樣法
C.綜合法與分析法
D.反證法與放縮法

查看答案和解析>>

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當x>1時,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問題:
(1)解不等式:9x>5x+4x;
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

以下方法不能用于證明不等式的是( 。

查看答案和解析>>

已知函數(shù)f(x)=alnxbx,且f(1)= -1,f′(1)=0,

⑴求f(x);

⑵求f(x)的最大值;

⑶若x>0,y>0,證明:lnx+lny.

本題主要考查函數(shù)、導數(shù)的基本知識、函數(shù)性質(zhì)的處理以及不等式的綜合問題,同時考查考生用函數(shù)放縮的方法證明不等式的能力.

查看答案和解析>>

證明不等式的最適合的方法是( )
A.綜合法
B.分析法
C.間接證法
D.合情推理法

查看答案和解析>>


同步練習冊答案