2.下列命題中.真命題是 查看更多

 

題目列表(包括答案和解析)

下列命題中,真命題是(    )

①當(dāng)b>0時(shí),a>b>1  ②當(dāng)b>0時(shí),a<b<1  ③當(dāng)a>0,b>0時(shí),1a>b  ④當(dāng)ab>0時(shí),>1a>b

A.①②③                               B.①②④

C.④                                   D.①②③④

查看答案和解析>>

下列命題中,真命題是(    )

①當(dāng)b>0時(shí),a>b>1  ②當(dāng)b>0時(shí),a<b<1  ③當(dāng)a>0,b>0時(shí),>1a>b  ④當(dāng)ab>0時(shí),>1a>b

A.①②③          B.①②④            C.④              D.①②③④

查看答案和解析>>

下列命題中,真命題是                               (  )

A.。
B.
C.。
D.。

查看答案和解析>>

下列命題中,真命題是(   )

A.

B.

C.

D.

 

查看答案和解析>>

下列命題中,真命題是    (    )

A.存在 使得

B.任意

C.若,則至少有一個(gè)大于1

D.

 

查看答案和解析>>

一、選擇題

1

2

3

4

5

6

7

8

9

10

11

12

A

C

B

D

A

B

A

B

B

A

C

A

二、填空題:

13. 25,60,15     14.12        15.       16.①,④

三、解答題:17.解:設(shè)f(x)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,)因?yàn)?sub>,,所以,由x的任意性得f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),若m>0,則x≥1時(shí),f(x)是增函數(shù),若m<0,則x≥1時(shí),f(x)是減函數(shù).

  ∵ ,,,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

18.解:(1)由直方圖知,成績(jī)?cè)?sub>內(nèi)的人數(shù)為:(人)

所以該班成績(jī)良好的人數(shù)為27人.

   (2)由直方圖知,成績(jī)?cè)?sub>的人數(shù)為人,

設(shè)為、、;成績(jī)?cè)?sub> 的人數(shù)為人,設(shè)為、、、.

時(shí),有3種情況;

時(shí),有6種情況;

分別在內(nèi)時(shí),

 

 

A

B

C

D

x

xA

xB

xC

xD

y

yA

yB

yC

yD

z

zA

zB

zC

zD

共有12種情況.

所以基本事件總數(shù)為21種,事件“”所包含的基本事件個(gè)數(shù)有12種.

∴P()=              

19.解析:(1)取中點(diǎn)E,連結(jié)ME、,

  ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點(diǎn)共面.

  (2)連結(jié)BD,則BD是在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD.

  ∴ ∠CBD+∠BCM=90°.  ∴ MC⊥BD.  ∴ 

  (3)連結(jié),由是正方形,知

  ∵ ⊥MC, ∴ ⊥平面

  ∴ 平面⊥平面

20.解析:(1).∵ x≥1. ∴ ,

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

(2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)f(x)在,上時(shí)減函數(shù),在,+上是增函數(shù).

∴ f(x)在,上的最小值是,最大值是,(因).

21.解析:(1)證明:將,消去x,得

   ①由直線l與橢圓相交于兩個(gè)不同的點(diǎn),得

所以    (2)解:設(shè)由①,得     因?yàn)?nbsp;

所以,

消去y2,得 化簡(jiǎn),得 

若F是橢圓的一個(gè)焦點(diǎn),則c=1,b2=a2-1

代入上式,解得    所以,橢圓的方程為    

22.解析:解:(1)由   

(2)假設(shè)存在實(shí)數(shù)t,使得為等差數(shù)列。則

存在t=1,使得數(shù)列為等差數(shù)列。

(3)由(1)、(2)知:為等差數(shù)列。

 

 


同步練習(xí)冊(cè)答案