知:若不是函數的極值點.則. 查看更多

 

題目列表(包括答案和解析)

(1)有同學利用如圖1的裝置來驗證力的平行四邊形定則:在豎直木板上鋪有白紙,固定兩個光滑的滑輪A和B,將繩子打一個結點O,每個鉤碼的質量相等,當系統(tǒng)達到平衡時,根據鉤碼個數讀出三根繩子的拉力TOA、TOB和TOC,回答下列問題:
a改變鉤碼個數,實驗能完成的是
 

精英家教網
A.鉤碼的個數N1=N2=2,N3=4
B.鉤碼的個數N1=N3=3,N2=4
C.鉤碼的個數N1=N2=N3=4
D.鉤碼的個數N1=3,N2=4,N3=5
b在拆下鉤碼和繩子前,應該做好三個方面的記錄:
 
 
;
 

(2)如圖2所示裝置,在探究影響平行板電容器電容的因素實驗中,①充好電的平行板電容器的極板A與一靜電計相接,極板B接地.若極板B稍向上移動一點,由觀察到的靜電計指針變化分析平行板電容器電容變小結論的依據是
 

A.兩極板間的電壓不變,極板上的電量變大
B.兩極板間的電壓不變,極板上的電量變小
C.極板上的電量幾乎不變,兩極板間的電壓變大
D.極板上的電量幾乎不變,兩極板間的電壓變小
②如圖3所示為電容式傳感器構件的示意圖,工作時動片(電極板A)沿平行于定片(電極板B)的方向發(fā)生一小段位移s,電容C便發(fā)生變化,通過測量電容C的變化情況就可以知道位移s.如果忽略極板的邊緣效應,那么在圖中,能正確反映電容C和位移s間函數關系的是
 
.(選填選項前面的字母)
精英家教網
(3)某同學在探究影響單擺振動周期的因素時,針對自己考慮到的幾個可能影響周期的物理量設計了實驗方案,并認真進行了實驗操作,取得了實驗數據.他經過分析后,在實驗誤差范圍內,找到了在擺角較小的情況下影響單擺周期的一個物理量,并通過作圖象找到了單擺周期與這個物理量的明確的數量關系.該同學的實驗數據記錄如下:
擺長L/m
周期T/s
最大擺角θ
擺球種類及質量m/g 
0.7000 0.7500 0.8000 0.8500 0.9000
鋼球A
8.0
3.0 1.69 1.73 1.80 1.86 1.89
9.0 1.68 1.74 1.79 1.85 1.90
鋼球B
16.0
3.0 1.68 1.74 1.79 1.85 1.90
9.0 1.69 1.73 1.80 1.85 1.89
銅球
20.0
3.0 1.68 1.74 1.80 1.85 1.90
9.0 1.68 1.74 1.79 1.85 1.90
鋁球
6.0
3.0 1.68 1.74 1.80 1.85 1.90
9.0 1.69 1.74 1.80 1.86 1.91
①分析上面實驗表格中的數據,你認為在擺角較小的情況下影響單擺周期的這個物理量是:
 

②利用表中給出的數據,試在圖4中坐標紙上畫出T2與L的關系圖線,該圖線斜率k的表達式k=
 
,k的數值為k=
 
.利用圖線斜率k表示重力加速度的表達式為g=
 
(用字母表示).

查看答案和解析>>

第七部分 熱學

熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。

一、分子動理論

1、物質是由大量分子組成的(注意分子體積和分子所占據空間的區(qū)別)

對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。

【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。

【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。

由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據空間為 v = 

而由圖不難看出,一個離子占據的空間就是小立方體的體積a3 ,

即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

【答案】3.97×10-10m 。

〖思考〗本題還有沒有其它思路?

〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)

2、物質內的分子永不停息地作無規(guī)則運動

固體分子在平衡位置附近做微小振動(振幅數量級為0.1),少數可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數量級為102m/s)。

無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數,如圖6-2所示);b、劇烈程度和溫度相關。

氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內分子數,N表示分子總數)極大時的速率,vP == ;平均速率:所有分子速率的算術平均值, ==;方均根速率:與分子平均動能密切相關的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

【例題2】證明理想氣體的壓強P = n,其中n為分子數密度,為氣體分子平均動能。

【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。

考查yoz平面的一個容器壁,P =            ①

設想在Δt時間內,有Nx個分子(設質量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據動量定理,容器壁承受的壓力

 F ==                            ②

在氣體的實際狀況中,如何尋求Nx和vx呢?

考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足

v2 =  +  + 

分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即

 =  +  +  = 3                    ③

這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則

 Nx = ·3N = na3                         ④

注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。

結合①②③④式不難證明題設結論。

〖思考〗此題有沒有更簡便的處理方法?

〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。

分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。

分子勢能和動能的總和稱為物體的內能。

二、熱現象和基本熱力學定律

1、平衡態(tài)、狀態(tài)參量

a、凡是與溫度有關的現象均稱為熱現象,熱學是研究熱現象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(tǒng)(簡稱系統(tǒng))。當系統(tǒng)的宏觀性質不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。

b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

c、熱力學第零定律(溫度存在定律):若兩個熱力學系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數值相等的狀態(tài)函數,這個狀態(tài)函數被定義為溫度。

2、溫度

a、溫度即物體的冷熱程度,溫度的數值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。

b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質分子平均動能的標志。

c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)

3、熱力學過程

a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = K

查看答案和解析>>

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運算

1、加法

表達: +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大小:c =  ,其中α為的夾角。

和矢量方向:、之間,和夾角β= arcsin

2、減法

表達: =  。

名詞:為“被減數矢量”,為“減數矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數矢量和減數矢量的起始端平移到一點,然后連接兩時量末端,指向被減數時量的時量,即是差矢量。

差矢量大小:a =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運算是平行四邊形和三角形法則的特例。

例題:已知質點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內和在T內的平均加速度大小。

解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、。

根據加速度的定義 得:,

由于有兩處涉及矢量減法,設兩個差矢量   ,根據三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關心各矢量的大小,顯然:

 =  =  =  ,且: =  , = 2

所以: =  =  , =  =  。

(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點乘,和代數的乘法有著質的不同。

⑴ 叉乘

表達:× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點乘

表達:· = c

名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。

點積的大。篶 = abcosα,其中α為的夾角。

二、共點力的合成

1、平行四邊形法則與矢量表達式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點力平衡

1、特征:質心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。

解說:直接用三力共點的知識解題,幾何關系比較簡單。

答案:距棒的左端L/4處。

(學生活動)思考:放在斜面上的均質長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。

答:不會。

二、轉動平衡

1、特征:物體無轉動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。

第三講 習題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質量為m的光滑均質球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。

靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。

對運動過程加以分析,物體必有加速和減速兩個過程。據物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質彈簧的勁度系數為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學生活動)思考:若將彈簧換成勁度系數k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變;不變。

(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習三力共點的應用。

根據在平面上的平衡,可知重心C在OA連線上。根據在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點知識應用。

答: 。

4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學問題。

對兩球進行受力分析,并進行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質金屬球上固定著一根長為L的輕質細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F = f 。

同理,木板插進去時,球體和木板之間的摩擦f′=  = F′。

答案: 

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。

2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。

應用整體法時應注意“系統(tǒng)”、“內力”和“外力”的涵義。

三、應用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目。可以通過不同解法的比較讓學生留下深刻印象。

法一,正交分解。(學生分析受力→列方程→得結果。)

法二,用摩擦角解題。

引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,Fmin = Gsinφm 

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>


同步練習冊答案