(Ⅱ)原不等式可化為由(Ⅰ)知.時.的最大值為. 查看更多

 

題目列表(包括答案和解析)

解關于的不等式:

【解析】解:當時,原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image004.png">,即            (2分)

 當時,原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image007.png">         (5分)  若時,的解為            (7分)

 若時,的解為         (9分) 若時,無解(10分) 若時,的解為  (12分綜上所述

時,原不等式的解為

時,原不等式的解為

時,原不等式的解為

時,原不等式的解為

時,原不等式的解為:

 

查看答案和解析>>

已知,設是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

2
3
sinθcosθ-cos2θ
可化為2sin(2θ+φ),則角φ的一個值可以為
-
π
6
-
π
6

查看答案和解析>>

下列說法中,錯誤的是

A.零和負數(shù)沒有對數(shù)

B.任何一個指數(shù)式都可化為對數(shù)式

C.以10為底的對數(shù)叫做常用對數(shù)

D.以e為底的對數(shù)叫做自然對數(shù)

查看答案和解析>>

已知函數(shù)

(Ⅰ)函數(shù)的最小正周期是多少?

(Ⅱ)函數(shù)的單調(diào)增區(qū)間是什么?

(Ⅲ)函數(shù)的圖像可由函數(shù)的圖像如何變換而得到?

 

查看答案和解析>>


同步練習冊答案