(3)是否存在.使同時(shí)滿足以下條件①對(duì).且,②對(duì),都有.若存在.求出的值.若不存在.請(qǐng)說明理由. 查看更多

 

題目列表(包括答案和解析)

對(duì)定義在上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)稱為函數(shù).

① 對(duì)任意的,總有

② 當(dāng)時(shí),總有成立.

已知函數(shù)是定義在上的函數(shù).

(1)試問函數(shù)是否為函數(shù)?并說明理由;

(2)若函數(shù)函數(shù),求實(shí)數(shù)的值;

(3)在(2)的條件下,是否存在實(shí)數(shù),使方程恰有兩解?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知定義域?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090717/20090717144308001.gif' width=33>的函數(shù)同時(shí)滿足以下三個(gè)條件:

[1] 對(duì)任意的,總有;

[2]

[3] 若,,且,則有成立,

并且稱為“友誼函數(shù)”,請(qǐng)解答下列各題:

(1)若已知為“友誼函數(shù)”,求的值;

(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.

(3)已知為“友誼函數(shù)”,假定存在,使得

求證:.

查看答案和解析>>

已知定義域?yàn)?img width=33 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/20/282020.gif">的函數(shù)同時(shí)滿足以下三個(gè)條件:

[1] 對(duì)任意的,總有;

[2] ;

[3] 若,且,則有成立,

并且稱為“友誼函數(shù)”,請(qǐng)解答下列各題:

(1)若已知為“友誼函數(shù)”,求的值;

(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.

(3)已知為“友誼函數(shù)”,假定存在,使得,

求證:.

查看答案和解析>>

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/c/leg7h1.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足以下三個(gè)條件:
(1) 對(duì)任意的,總有;(2);(3) 若,且,則有成立,則稱為“友誼函數(shù)”,請(qǐng)解答下列各題:
(1)若已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在,使得, 求證:.

查看答案和解析>>

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/4/11v3z2.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的,總有;
;
③當(dāng),且時(shí),成立.
稱這樣的函數(shù)為“友誼函數(shù)”.
請(qǐng)解答下列各題:
(1)已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?請(qǐng)給出理由;
(3)已知為“友誼函數(shù)”,假定存在,使得,且,求證:.

查看答案和解析>>

一.選擇題:DCDDA  DDBBC

解析:1:復(fù)數(shù)i的一個(gè)輻角為900,利用立方根的幾何意義知,另兩個(gè)立方根的輻角分別是900+1200與900+2400,即2100與3300,故虛部都小于0,答案為(D)。 

2:把x=3代入不等式組驗(yàn)算得x=3是不等式組的解,則排除(A)、(B), 再把x=2代入不等式組驗(yàn)算得x=2是不等式組的解,則排除(D),所以選(C).

3:在題設(shè)條件中的等式是關(guān)于的對(duì)稱式,因此選項(xiàng)在A、B為等價(jià)命題都被淘汰,若選項(xiàng)C正確,則有,即,從而C被淘汰,故選D。

4:“對(duì)任意的x1、x2­,當(dāng)時(shí),”實(shí)質(zhì)上就是“函數(shù)單調(diào)遞減”的“偽裝”,同時(shí)還隱含了“有意義”。事實(shí)上由于時(shí)遞減,從而由此得a的取值范圍為。故選D。

5:由韋達(dá)定理知

.從而,故故選A。

6:當(dāng)點(diǎn)A為切點(diǎn)時(shí),所求的切線方程為,當(dāng)A點(diǎn)不是切點(diǎn)時(shí),所求的切線方程為故選D。

7:由已知條件可知,EF∥平面ABCD,則F到平面ABCD的距離為2, ∴VF-ABCD?32?2=6,而該多面體的體積必大于6,故選(D).

8:由二項(xiàng)展開式系數(shù)的性質(zhì)有C+C+…+C+C=2,選B.

9:取特殊數(shù)列=3,則==10,選(B).

10:本題是考查雙曲線漸近線夾角與離心率的一個(gè)關(guān)系式,故可用特殊方程來考察。取雙曲線方程為=1,易得離心率e=,cos=,故選C。

二.填空題:11、; 12、;13、;14、,;15、,;

解析:11:因?yàn)?sub>(定值),于是,,,又,  故原式=

12:因?yàn)檎叫蔚拿娣e是16,內(nèi)切圓的面積是,所以豆子落入圓內(nèi)的概率是

13設(shè)k = 0,因拋物線焦點(diǎn)坐標(biāo)為把直線方程代入拋物線方程得,∴,從而。

14.(略)

15.(略)

三.解答題:

16.解:(1)∵對(duì)任意,∴--2分

    ∵不恒等于,∴--------------------------4分

   (2)設(shè)

時(shí),由  解得:

  解得其反函數(shù)為  ,-----------------7分

時(shí),由  解得:

解得函數(shù)的反函數(shù)為,--------------------9分

------------------------------------------------------------------12分

 

17.解:(Ⅰ)依題意,有

因此,的解析式為;      …………………6分

(Ⅱ)由)得),解之得

由此可得

,

所以實(shí)數(shù)的取值范圍是.    …………………12分

 

18.(I)因?yàn)閭?cè)面是圓柱的的軸截面,是圓柱底面圓周上不與、重合一個(gè)點(diǎn),所以  …………………2分

又圓柱母線^平面, Ì平面,所以^

,所以^平面,

因?yàn)?sub>Ì平面,所以平面平面;…………………………………6分

(II)設(shè)圓柱的底面半徑為,母線長度為,

當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),三角形的面積為,

三棱柱的體積為,三棱錐的體積為,

四棱錐的體積為,………………………………………10分

圓柱的體積為,                    ………………………………………………12分

四棱錐與圓柱的體積比為.……………………………………………14分

 

19.(Ⅰ)解:∵

        ∴

∴數(shù)列是首項(xiàng)為(),公比為2的等比數(shù)列,………………4分

,∴數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列

,∴…                      …………………7分

(Ⅱ)令代入得:

解得:

由此可猜想,即 …………………10分

下面用數(shù)學(xué)歸納法證明:

(1)當(dāng)n=1時(shí),等式左邊=1,右邊=,

當(dāng)n=1時(shí),等式成立,

(2)假設(shè)當(dāng)n=k時(shí),等式成立,即

當(dāng)n=k+1時(shí)

 

∴當(dāng)n=k+1時(shí),等式成立,

綜上所述,存在等差數(shù)列,使得對(duì)任意的成立。              …………………14分

 

 

20.解:(Ⅰ)∵軸,∴,由橢圓的定義得:,  ……………2分

,∴,

    ∴      ………………4分

,∴所求橢圓C的方程為.  …………………6分

(Ⅱ)由(Ⅰ)知點(diǎn)A(-2,0),點(diǎn)B為(0,-1),設(shè)點(diǎn)P的坐標(biāo)為

,  由-4得-,

∴點(diǎn)P的軌跡方程為      …………………8分

設(shè)點(diǎn)B關(guān)于P的軌跡的對(duì)稱點(diǎn)為,則由軸對(duì)稱的性質(zhì)可得:,

解得:,…………………10分

∵點(diǎn)在橢圓上,

,

整理得解得 …………………12分

∴點(diǎn)P的軌跡方程為,經(jīng)檢驗(yàn)都符合題設(shè),

∴滿足條件的點(diǎn)P的軌跡方程為.…………………14分

 

21.解(1)         …………………1分

,

當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);

當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)!3分

(2)令,則

 ,…………………5分

內(nèi)必有一個(gè)實(shí)根。即,使成立!8分

(3)       假設(shè)存在,由①知拋物線的對(duì)稱軸為x=-1,且

     ………………10分

由②知對(duì),都有

,                          …………………12分

當(dāng)時(shí),,其頂點(diǎn)為(-1,0)滿足條件①,又對(duì),都有,滿足條件②。

∴存在,使同時(shí)滿足條件①、②。     …………………14分


同步練習(xí)冊(cè)答案