③ ④ 其中正確的命題是 A.①與② B.②與③ C.①與③ D.②與④ 查看更多

 

題目列表(包括答案和解析)

其中真命題的是(  )

A.①②③  B.②③④  C.①③④  D.①②④

4.已知R, 下列說法正確的是(    )

A. 若ma =0,則必有m=0

B. 若m≠0, a≠0,則m a的方向與a同向

C. 若m≠0,則|m a |=m| a |

D. 若m≠0, a≠0,則m aa共線

查看答案和解析>>

命題:(1)底面是正多邊形的棱錐,一定是正棱錐;(2)所有的側棱相等的棱錐一定是正棱錐;(3)正棱錐的棱相等;(4)用一個平面截棱錐,夾在底面與截面間的幾何體稱為棱臺,其中正確的個數(shù)為

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

a
b
不共線,則λ
a
b
也不共線;②函數(shù)y=tanx在第一象限內是增函數(shù);③函數(shù)f(x)=sin|x|,g(x)=|sinx|均是周期函數(shù);④函數(shù)f(x)=4sin(2x+
π
3
)
[-
π
3
,0]
上是增函數(shù);⑤函數(shù)f(x)=asin(2x+
π
3
)+2
的最大值為|a|+2;⑥平行于同一個向量的兩個向量是共線向量;⑦若奇函數(shù)f(x)=xcosx+c的定義域為[a,b],則a+b+c=0.其中正確的命題是
 

查看答案和解析>>

a
b
不共線,則λ
a
b
也不共線;②函數(shù)y=tanx在第一象限內是增函數(shù);③函數(shù)f(x)=sin|x|,g(x)=|sinx|均是周期函數(shù);④函數(shù)f(x)=4sin(2x+
π
3
)
[-
π
3
,0]
上是增函數(shù);⑤函數(shù)f(x)=asin(2x+
π
3
)+2
的最大值為|a|+2;⑥平行于同一個向量的兩個向量是共線向量;⑦若奇函數(shù)f(x)=xcosx+c的定義域為[a,b],則a+b+c=0.其中正確的命題是______.

查看答案和解析>>

2、下列命題:
①{2,3,4,2}是由四個元素組成的集合;
②集合{0}表示僅由一個數(shù)“零”組成的集合;
③集合{1,2,3}與{3,2,1}是兩個不同的集合;
④集合{小于1的正有理數(shù)}是一個有限集.其中正確命題是( 。

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

B

D

D

C

D

C

C

D

B

C

        <center id="zw6ic"><meter id="zw6ic"></meter></center>

        <thead id="zw6ic"><td id="zw6ic"></td></thead>

          1,3,5

          三、解答題

          17.解:(1)依題意由g(x)得

                 f(x)-=sin[2(x+)+]…得f(x)=-sin(2x+)+

                 又f(x)=acos(x+)+b=-sin(2x+)++b           比較得a=1,b=0…

             (2)(x)=g(x)-f(x)=sin(2x+)-cos(2x+)-

                 =sin(2x+)-…(9分)              ∴2kπ-≤2x+≤2kπ+(k∈Z)

                        kπ-≤x≤kπ+(k∈Z)∴(x)的單調增區(qū)間為[kπ-,kπ+](k∈Z)

                 ………………(12分)

          18.解:(1)由于C(n)在各段上都是單調增函數(shù),因此在每一段上不存在買多于n本書比恰好買n本書所花錢少的問題,一定是在各段分界點附近因單價的差別造成買多于n本書比恰好買n本書所花錢少的現(xiàn)象. C(25)=1125=275,C(23)=1223=276,∴C(25)<C(23).1分

          C(24)=1224=288,∴ C(25)<C(24)…………………..…………..2分

          C(49)=4910=490,C(48)=1148=528,∴ C(49)<C(48)

          C(47)=1147=517,∴ C(49)<C(47)

          C(46)=1146=506,∴ C(49)<C(46)

          C(45)=1145=495,∴ C(49)<C(45)……….. ……….………..……..5分

          ∴這樣的n有23,24,45,46,47,48   …….………..……….. ……………6分

          (2)設甲買n本書,則乙買60-n本,且n30,n(不妨設甲買的書少于或等于乙買的書)

          ①當1n11時,4960-n59

          出版公司賺得錢數(shù)…….. …7分

          ②當1224時,3660-48,

          出版公司賺得錢數(shù)

          ③當2530時,3060-35,

          出版公司賺得錢數(shù)……..……….. ………9分

          ∴當時,  當時,

          時,

          故出版公司至少能賺302元,最多能賺384元…….. .………. .……12分

          19.解: (1)D為A1C1的中點. …………………………………2分

          8J43  連結A1B與AB1交于E,

          則E為A1B的中點,DE為平面AB1D與平面A1BC1的交線,

          ∵BC1∥平面AB1D

          ∴BC1∥DE,∴D為A1C1的中點. ……………………………6分

          (2) 解法一:過D作DF⊥A1B1于F,

          由正三棱柱的性質,AA1⊥DF,∴DF⊥平面AB1,

          連結EF、DE,在正三角形A1B1C1中,

          ∵D是A1C1的中點,∴B1D=A1B1=a,…………………7分

          又在直角三角形AA1D中,∵AD==a,∴AD=B1D. ……………8分

          ∴DE⊥AB1,∴可得EF⊥AB1,則∠DEF為二面角A1-AB1-D的平面角. ……10分

          可求得DF=a,∵△B1FE∽△B1AA1,得EF=a,∴∠DEF=,即為所求. ……12分

          20.解:由題意得:①…

          ∵{an}、{bn}都是各項均為正的數(shù)列, 由②得

          代入①得……4分 

          ………7分 ∴數(shù)列{bn}是等差數(shù)列

          由a1=1,b1=及①②兩式得……………12

          21.解:(1)由條件得M(0,-),F(xiàn)(0,).設直線AB的方程為

                 y=kx+,A(),B().

                 則,Q().

                 由.

                 ∴由韋達定理得+=2pk,?=-

                 從而有= +=k(+)+p=………………(4分)

                

                                                          

                        的取值范圍是.……………………………………………(6分)

             (2)拋物線方程可化為,求導得.

                

                 ∴切線NA的方程為:y-.

                 切線NB的方程為:………………………………………(8分)

                 由解得∴N(

                 從而可知N點Q點的橫坐標相同但縱坐標不同.

                 ∴NQ∥OF.即…………………………………………………………(9分)

                 又由(Ⅰ)知+=2pk,?=-p  ∴N(pk,-

                 而M(0,-)  ∴

                 又. ∴.………………………………………………(12分)

          22.解:(1)

                 由k≥-1,得3x2-2ax+1≥0,即a≤恒成立…………(2分)

                 ∴a≤(3x+min………………………………………………………………(4分)

                 ∵當x∈(0,1)時,3x+≥2=2,當且僅當x=時取等號.

                 ∴(3x+min =.故a的取值范圍是(-∞,].……………………(6分)

             (2)設g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]則

                 g′(x)=3x2-3a=3(x2-a).………………………………………………………(8分)

             ①當a≥1時,∴g′(x)≤0.從而g(x)在[-1,1]上是減函數(shù).

                 ∴g(x)的最大值為g(-1)=3a-1.…………………………………………(9分)

             ②當0<a<1時,g′(x)=3(x+)(x-).

                 由g′(x) >0得,x>或x<-:由g′(x)< 0得,-<x<.

                 ∴g(x)在[-1,-],[,1]上增函數(shù),在[-,]上減函數(shù).

                 ∴g(x)的極大值為g(-)=2a.…………………………………………(10分)

                 由g(-)-g(1)=2a+3a-1=(+1)?(2-1)知

                 當2-1<0,即0≤a<時,g(-)<g(1)

                 ∴g(x)=g(1)=1-3a.…………………………………………(11分)

                 當2-1≥0,即<a<1時,g(-)≥g(1)

                 ∴g(x)=g(-)=2a.………………………………………………(12分)

             ③當a≤0時,g′(x)≥0,從而g(x)在[-1,1]上是增函數(shù).

                 ∴g(x)=g(1)=1-3a………………………………………………………(13分)

                 綜上分析,g(x) ………………………………(14分)

           


          同步練習冊答案