題目列表(包括答案和解析)
已知a1=1,an=n(an+1-an),則數(shù)列的通項(xiàng)公式an=( )
A.2n-1 | B.n-1 |
C.n2 | D.n |
數(shù)列{an}中,Sn是其前n項(xiàng)和,且a1=1,an=(n≥2,n∈N+),則Sn= .
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
1 |
3 |
1 |
f′(an) |
1 |
an |
1.(1)因?yàn)?sub>,所以
又是圓O的直徑,所以
又因?yàn)?sub>(弦切角等于同弧所對圓周角)
所以所以
又因?yàn)?sub>,所以相似
所以,即
(2)因?yàn)?sub>,所以,
因?yàn)?sub>,所以
由(1)知:。所以
所以,即圓的直徑
又因?yàn)?sub>,即
解得
2.依題設(shè)有:
令,則
3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題
點(diǎn)的直角坐標(biāo)分別為
故是以為斜邊的等腰直角三角形,
進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為
,即
將代入上述方程,得
,即
4.假設(shè),因?yàn)?sub>,所以。
又由,則,
所以,這與題設(shè)矛盾
又若,這與矛盾
綜上可知,必有成立
同理可證也成立
命題成立
5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.
1°.當(dāng)n=1時(shí),命題顯然成立;
2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命題對n=k+1.成立
由1°, 2°,命題對任意的正整數(shù)n成立.
6.(1)因?yàn)?sub>,,
,所以
故事件A與B不獨(dú)立。
(2)因?yàn)?sub>
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com