1. 2. 80 3. 4.1-i 5. 6.m=0.n=1 7.15 查看更多

 

題目列表(包括答案和解析)

已知向量
a
=(1,2),
b
=(3,4)

(1)求2
a
,
a
+
b
,
a
b
;
(2)若
c
=(3,m)且
c
a
,求m的值.

查看答案和解析>>

設(shè)集合P={1,2,3,4},Q={x||x|≤2,xR},則PQ等于…………(  )

A.{1,2}                                           

B.{3,4}

C.{1}                                                

D.{-2,-1,0,1,2}

查看答案和解析>>

一個(gè)平面封閉區(qū)域內(nèi)任意兩點(diǎn)距離的最大值稱(chēng)為該區(qū)域的“直徑”,封閉區(qū)域邊界曲線的長(zhǎng)度與區(qū)域直徑之比稱(chēng)為區(qū)域的“周率”,下面四個(gè)平面區(qū)域(陰影部分)的周率從左到右依次記為τ1,τ2,τ3,τ4,則下列關(guān)系中正確的為
[     ]
A.τ143
B.τ312
C.τ423
D.τ341

查看答案和解析>>

一個(gè)平面封閉區(qū)域內(nèi)任意兩點(diǎn)距離的最大值稱(chēng)為該區(qū)域的“直徑”,封閉區(qū)域邊界曲線的長(zhǎng)度與區(qū)域直徑之比稱(chēng)為區(qū)域的“周率”,下面四個(gè)平面區(qū)域(陰影部分)的周率從左到右依次記為τ1,τ2,τ3,τ4,則下列關(guān)系中正確的為
[     ]
A.τ143
B.τ312
C.τ421
D.τ341

查看答案和解析>>

有一箱子,內(nèi)有3黑球與2白球.有一游戲,從箱子中任取出一球.假設(shè)每一顆球被取出的機(jī)率都相同,若取出黑球可得獎(jiǎng)金50元,而取出白球可得獎(jiǎng)金100元,則下列哪一個(gè)選項(xiàng)是此游戲的獎(jiǎng)金期望值?
(1)70 元  (2)75 元  (3)80 元  (4)85 元  (5)90 元.

查看答案和解析>>

 

1.(1)因?yàn)?sub>,所以

      又是圓O的直徑,所以

      又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)

      所以所以

      又因?yàn)?sub>,所以相似

      所以,即

  (2)因?yàn)?sub>,所以,

       因?yàn)?sub>,所以

       由(1)知:。所以

       所以,即圓的直徑

       又因?yàn)?sub>,即

     解得

2.依題設(shè)有:

 令,則

 

 

3.將極坐標(biāo)系內(nèi)的問(wèn)題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問(wèn)題

  點(diǎn)的直角坐標(biāo)分別為

  故是以為斜邊的等腰直角三角形,

  進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

      ,即

  將代入上述方程,得

  ,即

4.假設(shè),因?yàn)?sub>,所以。

又由,則

所以,這與題設(shè)矛盾

又若,這與矛盾

綜上可知,必有成立

同理可證也成立

命題成立

5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

1°.當(dāng)n=1時(shí),命題顯然成立;

2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命題對(duì)n=k+1.成立

由1°, 2°,命題對(duì)任意的正整數(shù)n成立.

6.(1)因?yàn)?sub>,

      ,所以

       故事件A與B不獨(dú)立。

   (2)因?yàn)?sub>

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案