題目列表(包括答案和解析)
(本題滿分16分)已知二次函數(shù)f (x) = x2 ??ax + a (x∈R)同時滿足:①不等式 f (x) ≤ 0的解集有且只有一個元素;②在定義域內(nèi)存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.設(shè)數(shù)列{an}的前 n 項和Sn = f (n).(1)求函數(shù)f (x)的表達(dá)式;(2)求數(shù)列{an}的通項公式;(3)在各項均不為零的數(shù)列{cn}中,若ci·ci+1 < 0,則稱ci,ci+1為這個數(shù)列{cn}一對變號項.令cn = 1 ?? (n為正整數(shù)),求數(shù)列{cn}的變號項的對數(shù).
(本小題滿分16分)設(shè)等差數(shù)列{an}的前n項和是Sn,已知S3=9,S6=36.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m、k,使am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,說明理由;
(3)設(shè)數(shù)列{bn}的通項公式為bn=3n-2.集合A={x∣x=an,n∈N*},B={x∣x=bn,n∈N*}.將集合A∪B中的元素從小到大依次排列,構(gòu)成數(shù)列c1,c2,c3,…,求{cn}的通項公式.
(本小題滿分16分)
已知數(shù)列﹛an﹜中,a2=p(p是不等于0的常數(shù)),Sn為數(shù)列﹛an﹜的前n項和,若對任意的正整數(shù)n都有Sn=.
(1)證明:數(shù)列﹛an﹜為等差數(shù)列;
(2)記bn=+,求數(shù)列﹛bn﹜的前n項和Tn;
(3)記cn=Tn-2n,是否存在正整數(shù)m,使得當(dāng)n>m時,恒有cn∈(,3)?若存在,證明你的結(jié)論,并給出一個具體的m值;若不存在,請說明理由。
(本小題滿分16分)設(shè)等差數(shù)列{an}的前n項和是Sn,已知S3=9,S6=36.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m、k,使am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,說明理由;
(3)設(shè)數(shù)列{bn}的通項公式為bn=3n-2.集合A={x∣x=an,n∈N*},B={x∣x=bn,n∈N*}.將集合A∪B中的元素從小到大依次排列,構(gòu)成數(shù)列c1,c2,c3,…,求{cn}的通項公式.
(本小題滿分16分)
已知數(shù)列{an}的通項公式為an = (nÎN*).
⑴求數(shù)列{an}的最大項;
⑵設(shè)bn = ,試確定實常數(shù)p,使得{bn}為等比數(shù)列;
⑶設(shè),問:數(shù)列{an}中是否存在三項,,,使數(shù)列,,是等差數(shù)列?如果存在,求出這三項;如果不存在,說明理由.
1.(1)因為,所以
又是圓O的直徑,所以
又因為(弦切角等于同弧所對圓周角)
所以所以
又因為,所以相似
所以,即
(2)因為,所以,
因為,所以
由(1)知:。所以
所以,即圓的直徑
又因為,即
解得
2.依題設(shè)有:
令,則
3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題
點的直角坐標(biāo)分別為
故是以為斜邊的等腰直角三角形,
進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為
,即
將代入上述方程,得
,即
4.假設(shè),因為,所以。
又由,則,
所以,這與題設(shè)矛盾
又若,這與矛盾
綜上可知,必有成立
同理可證也成立
命題成立
5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.
1°.當(dāng)n=1時,命題顯然成立;
2°.假設(shè)當(dāng)n=k(kN*)時,命題成立,
即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),
則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=( k+1)(k+1+1)(k+1+2)(k+1+3)
即命題對n=k+1.成立
由1°, 2°,命題對任意的正整數(shù)n成立.
6.(1)因為,,
,所以
故事件A與B不獨立。
(2)因為
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com