題目列表(包括答案和解析)
在平面直角坐標(biāo)系中,已知△頂點分別為橢圓的兩個焦點,頂點在該橢圓上,則=_______________.
在平面直角坐標(biāo)系中,已知△頂點
分別為橢圓的兩個焦點,頂點在該橢圓上,則=_______________.
x2 |
a2 |
y2 |
b2 |
10 |
3 |
一、選擇題:本大題共8個小題,每小題5分,共40分。
題號
1
2
3
4
5
6
7
8
答案
B
A
B
D
C
D
C
D
二、填空題:本大題共6個小題,每小題5分,共30分
9. 10. 60 11. 12. 13. 2 14. -2;1
三、解答題: 本大題共6個小題,共80分。
15. (本小題共13分)
已知函數(shù)
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)求函數(shù)在區(qū)間上的最值。
解:(Ⅰ)由題意
所求定義域為 {} …………4分
(Ⅱ)
…………9分
由 知 ,
所以當(dāng)時,取得最大值為; …………11分
當(dāng)時,取得最小值為0 。 …………13分
16. (本小題共13分)
已知數(shù)列中,,點(1,0)在函數(shù)的圖像上。
(Ⅰ)求數(shù)列 的通項;
(Ⅱ)設(shè),求數(shù)列的前n項和。
解:(Ⅰ)由已知 又 …………3分
所以 數(shù)列是公比為的等比數(shù)列 所以 …………6分
(Ⅱ) 由 …………9分
所以 …………13分
17. (本小題共14分)
如圖,在正三棱柱中,,是的中點,點在上,。
(Ⅰ)求所成角的大。
(Ⅱ)求二面角的正切值;
(Ⅲ) 證明.
解:(Ⅰ)在正三棱柱中,
又 是正△ABC邊的中點,
…………3分
∠為所成角
又 sin∠= …………5分
所以所成角為()
(Ⅱ) 由已知得
∠為二面角的平面角, 所以 …………9分
(Ⅲ)證明: 依題意 得 ,,
因為 …………11分
又由(Ⅰ)中 知,且,
…………14分
18. (本小題共13分)
某校高二年級開設(shè)《幾何證明選講》及《數(shù)學(xué)史》兩個模塊的選修科目。每名學(xué)生至多選修一個模塊,的學(xué)生選修過《幾何證明選講》,的學(xué)生選修過《數(shù)學(xué)史》,假設(shè)各人的選擇相互之間沒有影響。
(Ⅰ)任選1名學(xué)生,求該生沒有選修過任何一個模塊的概率;
(Ⅱ)任選4名學(xué)生,求至少有3人選修過《幾何證明選講》的概率。
解:(Ⅰ)設(shè)該生參加過《幾何證明選講》的選修為事件A,
參加過《數(shù)學(xué)史》的選修為事件B, 該生沒有選修過任何一個模塊的概率為P,
則
所以 該生沒有選修過任何一個模塊的概率為 …………6分
(Ⅱ)至少有3人選修過《幾何證明選講》的概率為
所以至少有3人選修過《幾何證明選講》的概率為 …………13分
19. (本小題共13分)
已知函數(shù)的圖像如圖所示。
(Ⅰ)求的值;
(Ⅱ)若函數(shù)在處的切線方程為,求函數(shù)的
解析式;
(Ⅲ)若=5,方程有三個不同的根,求實數(shù)的取值范圍。
解: 函數(shù)的導(dǎo)函數(shù)為
(Ⅰ)由圖可知 函數(shù)的圖像過點(0,3),且
得 …………3分
(Ⅱ)依題意 且
解得
所以 …………8分
(Ⅲ)依題意
由 ①
若方程有三個不同的根,當(dāng)且僅當(dāng) 滿足 ②
由 ① ② 得
所以 當(dāng) 時 ,方程有三個不同的根。 …………13分
20. (本小題共14分)
已知分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線,垂足為,線段的垂直平分線交于點M。
(Ⅰ)求動點M的軌跡的方程;
(Ⅱ)過點作直線交曲線于兩個不同的點P和Q,設(shè)=,若∈[2,3],求的取值范圍。
解:(Ⅰ)設(shè)M,則,由中垂線的性質(zhì)知
||= 化簡得的方程為 …………3分
(另:由知曲線是以x軸為對稱軸,以為焦點,以為準(zhǔn)線的拋物線
所以 , 則動點M的軌跡的方程為)
(Ⅱ)設(shè),由= 知 ①
又由 在曲線上知 ②
由 ① ② 解得 所以 有 …………8分
=== …………10分
設(shè) ,∈[2,3], 有 在區(qū)間上是增函數(shù),
得 進而有
所以 的取值范圍是 …………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com