7.已知函數(shù)的定義域為.它的導函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知f(x)的定義域為R,它的導數(shù)f(x)圖像如圖則

[  ]
A.

f(x)在x=1處有極小值

B.

f(x)在x=1處有極大值

C.

f(x)在R上為增函數(shù)

D.

f(x)在(-∞,-1)為減函數(shù)(1,+∞)為增函數(shù)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數(shù)y=f(x)的導數(shù)y=f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數(shù)y=f(x)的導數(shù)y=f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數(shù)y=f(x)的導數(shù)y=f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數(shù)y=f(x)的導數(shù)y=f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>


同步練習冊答案