證明:設(shè)(),則,所以,, 查看更多

 

題目列表(包括答案和解析)

17.證明:假設(shè)f(x)至少有兩個零點(diǎn)。不妨設(shè)有兩個零點(diǎn),則f()=0,f()=0

所以f()=f()與已知f(x)是單調(diào)函數(shù)矛盾,所以假設(shè)錯誤,因此f(x)在其定義域上是單調(diào)函數(shù)證明f(x)至多有一個零點(diǎn)

一批產(chǎn)品共10件,其中7件正品,3件次品,每次從這批產(chǎn)品中任取一件,在下述三種情況下,分別求直至取得正品時所需次數(shù)X的概率分布。

(1)每次取出的產(chǎn)品不再放回去;    

(2)每次取出的產(chǎn)品仍放回去;

(3)每次取出一件次品后,總是另取一件正品放回到這批產(chǎn)品中.

查看答案和解析>>

(2013•寶山區(qū)二模)已知數(shù)列{an}的前n項和為Sn,且滿足a1=a(a≠3),an+1=Sn+3n,設(shè)bn=Sn-3n,n∈N*
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N*,求實數(shù)a的最小值;
(3)當(dāng)a=4時,給出一個新數(shù)列{en},其中en=
3 , n=1
bn , n≥2
,設(shè)這個新數(shù)列的前n項和為Cn,若Cn可以寫成tp(t,p∈N*且t>1,p>1)的形式,則稱Cn為“指數(shù)型和”.問{Cn}中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

(2009•閔行區(qū)二模)課本中介紹了諾貝爾獎,其發(fā)放方式為:每年一次,把獎金總金額平均分成6份,獎勵在6項(物理、化學(xué)、文學(xué)、經(jīng)濟(jì)學(xué)、生理學(xué)和醫(yī)學(xué)、和平)為人類作出了最有益貢獻(xiàn)的人.每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息用于增加基金總額,以便保證獎金數(shù)逐年遞增.資料顯示:1998年諾貝爾獎發(fā)獎后基金總額已達(dá)19516萬美元,假設(shè)基金平均年利率為
r=6.24%.
(1)請計算:1999年諾貝爾獎發(fā)獎后基金總額為多少萬美元?當(dāng)年每項獎金發(fā)放多少萬美元(結(jié)果精確到1萬美元)?
(2)設(shè)f(x)表示為第x(x∈N*)年諾貝爾獎發(fā)獎后的基金總額(1998年記為f(1)),試求函數(shù)f(x)的表達(dá)式.并據(jù)此判斷新民網(wǎng)一則新聞“2008年度諾貝爾獎各項獎金高達(dá)168萬美元”是否與計算結(jié)果相符,并說明理由.

查看答案和解析>>

(2009•崇明縣二模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點(diǎn)坐標(biāo)為A(0,-
2
),且其右焦點(diǎn)到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點(diǎn),弦AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)M,則稱弦AB是點(diǎn)M的一條“相關(guān)弦”,如果點(diǎn)M的坐標(biāo)為M(
1
2
,0
),求證點(diǎn)M的所有“相關(guān)弦”的中點(diǎn)在同一條直線上;
(3)根據(jù)解決問題(2)的經(jīng)驗與體會,請運(yùn)用類比、推廣等思想方法,提出一個與“相關(guān)弦”有關(guān)的具有研究價值的結(jié)論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

用反證法證明命題:“若直線AB、CD是異面直線,則直線AC、BD也是異面直線”的過程歸納為以下三個步驟:
①則A,B,C,D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;
②所以假設(shè)錯誤,即直線AC、BD也是異面直線;
③假設(shè)直線AC、BD是共面直線;
則正確的序號順序為(  )

查看答案和解析>>


同步練習(xí)冊答案