(2)若 ().令,試用解析式寫出關于的函數. 查看更多

 

題目列表(包括答案和解析)

已知點集,其中,,點列在L中,為L與y軸的交點,等差數列的公差為1,

(1)求數列的通項公式;

(2)若,令;試用解析式寫出關于的函數。

(3)若,給定常數m(),是否存在,使得 ,若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

已知點集,其中,,點列在L中,為L與y軸的交點,等差數列的公差為1,。
(1)求數列的通項公式;
(2)若,令;試用解析式寫出關于的函數。
(3)若,給定常數m(),是否存在,使得 ,若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

(2009•奉賢區(qū)二模)已知:點列Pn(an,bn)(n∈N*)在直線L:y=2x+1上,P1為L與y軸的交點,數列{an}為公差為1的等差數列.
(1)求數列{bn}的通項公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N*),令Sn=f(1)+f(2)+f(3)+…+f(n);試用解析式寫出Sn關于n的函數.
(3)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N*),是否存在k∈N*,使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

 

一、填空題(每題5分)

1)  2)  3)0  4)  5)   6) ②④  7)  8)  9)  10)  11)

二、選擇題  (每題5分)

12、A  13、B   14、B   15、D

三、解答題

16、

(1)因為,所以∠BCA(或其補角)即為異面直線所成角         -------(3分)

∠ABC=90°, AB=BC=1,所以,     -------(2分)

即異面直線所成角大小為。      -------(1分)

(2)直三棱柱ABC-A1B1C1中,,所以即為直線A1C與平面ABC所成角,所以。            -------(2分)

中,AB=BC=1得到,中,得到,    -------(2分)

 

所以               -------(2分)

17、(10=       -------(1分)

=       -------(1分)

=           -------(1分)

周期;                 -------(1分)

,解得單調遞增區(qū)間為    -------(2分)

(2),所以

,

所以的值域為,                           -------(4分)

,所以,即       -------(4分)

 

18、,顧客得到的優(yōu)惠率是。         -------(5分)

(2)、設商品的標價為x元,則500≤x≤800                         ------(2分)

消費金額:  400≤0.8x≤640

由題意可得:

1       無解                                 ------(3分)

或(2        得:625≤x≤750                    ------(3分)

 

因此,當顧客購買標價在元內的商品時,可得到不小于的優(yōu)惠率。------(1分)

 

19、(1)軸的交點,              ------(1分)

;所以,即,-                 ----(1分)

因為上,所以,即    ----(2分)

(2)若 ),

即若 )         ----(1分)

(A)當時,

                                                     ----(1分)

==,而,所以              ----(1分)

(B)當時,   ----(1分)

= =,                        ----(1分)

,所以                                       ----(1分)

因此)                              ----(1分)

(3)假設存在使得成立。

(A)若為奇數,則為偶數。所以,,而,所以,方程無解,此時不存在。      ----(2分)

(B) 若為偶數,則為奇數。所以,,而,所以,解得                    ----(2分)

由(A)(B)得存在使得成立。                   ----(1分)

 

20、(1)(A):點P與點F(2,0)的距離比它到直線+4=0的距離小2,所以點P與點F(2,0)的距離與它到直線+2=0的距離相等。                ----(1分)

由拋物線定義得:點在以為焦點直線+2=0為準線的拋物線上,              ----(1分)

拋物線方程為。                             ----(2分) 

解法(B):設動點,則。當時,,化簡得:,顯然,而,此時曲線不存在。當時,,化簡得:

 

(2),

,

,               ----(1分)

,

,即,           ----(2分)

直線為,所以                      ----(1分)

                         ----(1分)

由(a)(b)得:直線恒過定點。                        ----(1分)

 


同步練習冊答案