題目列表(包括答案和解析)
第八部分 靜電場
第一講 基本知識介紹
在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。
如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關注的是電場中更本質的內容,關注的是縱向的深化和而非橫向的綜合。
一、電場強度
1、實驗定律
a、庫侖定律
內容;
條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質可以通過介電常數(shù)將k進行修正(如果介質分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應用”的)。
b、電荷守恒定律
c、疊加原理
2、電場強度
a、電場強度的定義
電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。
b、不同電場中場強的計算
決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——
⑴點電荷:E = k
結合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——
⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。
⑶均勻帶電球殼
內部:E內 = 0
外部:E外 = k ,其中r指考察點到球心的距離
如果球殼是有厚度的的(內徑R1 、外徑R2),在殼體中(R1<r<R2):
E = ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內部分的總電量…〕。
⑷無限長均勻帶電直線(電荷線密度為λ):E =
⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ
二、電勢
1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即
U =
參考點即電勢為零的點,通常取無窮遠或大地為參考點。
和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。
2、典型電場的電勢
a、點電荷
以無窮遠為參考點,U = k
b、均勻帶電球殼
以無窮遠為參考點,U外 = k ,U內 = k
3、電勢的疊加
由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。
4、電場力對電荷做功
WAB = q(UA - UB)= qUAB
三、靜電場中的導體
靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽
1、靜電平衡的特征可以總結為以下三層含義——
a、導體內部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。
b、導體是等勢體,表面是等勢面。
c、導體內部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。
2、靜電屏蔽
導體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內部的屏蔽,但不能實現(xiàn)內部對外部的屏蔽;導體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內部的屏蔽,也可實現(xiàn)內部對外部的屏蔽。
四、電容
1、電容器
孤立導體電容器→一般電容器
2、電容
a、定義式 C =
b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質的種類,所以不同電容器有不同的電容
⑴平行板電容器 C = = ,其中ε為絕對介電常數(shù)(真空中ε0 = ,其它介質中ε= ),εr則為相對介電常數(shù),εr = 。
⑵柱形電容器:C =
⑶球形電容器:C =
3、電容器的連接
a、串聯(lián) = +++ … +
b、并聯(lián) C = C1 + C2 + C3 + … + Cn
4、電容器的能量
用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以
E = q0U0 = C =
電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。
對平行板電容器 E總 = E2
認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結論適用于非勻強電場。
五、電介質的極化
1、電介質的極化
a、電介質分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)
b、電介質的極化:當介質中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。
2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷
a、束縛電荷與自由電荷:在圖7-4中,電介質左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質,導體中的原子核和內層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。
b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。
第二講 重要模型與專題
一、場強和電場力
【物理情形1】試證明:均勻帶電球殼內部任意一點的場強均為零。
【模型分析】這是一個疊加原理應用的基本事例。
如圖7-5所示,在球殼內取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為
ΔE1 = k
ΔE2 = k
為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然
= ΔΩ =
所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。
同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6 … 激發(fā)的合場強均為零。原命題得證。
【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。
【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為
ΔE = k ,方向由P指向O點。
無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求
ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′
所以 ΣEz = ΣΔS′
而 ΣΔS′= πR2
【答案】E = kπσ ,方向垂直邊界線所在的平面。
〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?
〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠對稱抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …
〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。
【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。
【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內部的結論,即“剝皮法則”),二是填補法。
將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發(fā)的場強為
E1 = k = kρπr1 ,方向由O指向P
“小球”激發(fā)的場強為
E2 = k = kρπr2 ,方向由P指向O′
E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。
【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。
〖學員思考〗如果在模型2中的OO′連線上O′一側距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?
〖解說〗上面解法的按部就班應用…
〖答〗πkρq〔?〕。
二、電勢、電量與電場力的功
【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢UP 。
【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢
ΔU = k
環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。
【答案】UP =
〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結論為多少?如果這個總電量的分布不是均勻的,結論會改變嗎?
〖答〗UP = ;結論不會改變。
〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?
〖解說〗(1)球心電勢的求解從略;
球內任一點的求解參看圖7-5
ΔU1 = k= k·= kσΔΩ
ΔU2 = kσΔΩ
它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ
而 r1 + r2 = 2Rcosα
所以 ΔU = 2RkσΔΩ
所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ
注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——
ΣU = 4πRkσ= k
(2)球心電勢的求解和〖思考〗相同;
球內任一點的電勢求解可以從(1)問的求解過程得到結論的反證。
〖答〗(1)球心、球內任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內部不再是等勢體,球面不再是等勢面)。
【相關應用】如圖7-9所示,球形導體空腔內、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。
【解析】由于靜電感應,球殼的內、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。
根據(jù)靜電感應的嘗試,內壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內壁的帶電是不均勻的,根據(jù)上面的結論,其在球心形成的電勢仍可以應用定式,所以…
【答案】Uo = k - k + k 。
〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。
〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。
此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有
UO = k + k + k = 0
QB應指B球殼上的凈電荷量,故 QB = 0
所以 QA = -q
☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式。
基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——
UB = k + k
〖答〗(1)QA = -q ;(2)UB = k(1-) 。
【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>
【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構成環(huán)形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。
每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。
所以,取走ab前 3U1 = UA
2U2 + U1 = UB
取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以
UA′= 2U1
UB′= U1 + U2
【答案】UA′= UA ;UB′= UA + UB 。
〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?
〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——
我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為
U′= U1 + U2 + U3 + U4
最后回到原來的單層盒子,中心電勢必為 U = U′
〖答〗U = (U1 + U2 + U3 + U4)。
☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)
〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。
〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內、外層均勻地帶上電量為q的電荷,如圖7-12所示。
從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。
而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。
考查P點,UP = k + U半球面
其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ
以上的兩個關系已經(jīng)足以解題了。
〖答〗UQ = k - UP 。
【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?
【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。
UO = k + k = 0
UD = k + k = -
U∞ = 0
再用功與電勢的關系即可。
【答案】(1);(2)。
【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?
【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)
【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。
〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?
〖解〗略。
〖答〗k(++)。
〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球將開始運動起來,試求中間這個小球的最大速度。
〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則
動量關系 mv + 2m v′= 0
能量關系 3k = 2 k + k + mv2 + 2m
解以上兩式即可的v值。
〖答〗v = q 。
三、電場中的導體和電介質
【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。
【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內部合場強為零的結論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。
為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然
(σ1 + σ2)S = Q1
(σ3 + σ4)S = Q2
A板內部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0
A板內部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0
解以上四式易得 σ1 = σ4 =
σ2 = ?σ3 =
有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如EⅡ =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。
最后,UAB = EⅡd
【答案】(1)A板外側電量、A板內側電量,B板內側電量?、B板外側電量;(2)A板外側空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。
〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側空間場強等于多少?(答:為零。)
〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質,是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?
〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側受力·(方向相左),內側受力·(方向向右),它們合成即可,結論為F = Q1Q2 ,排斥力!
【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質,當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質表面的極化電荷。
【解說】電介質的充入雖然不能改變內表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質部分電量為Q2 ,顯然有
Q1 + Q2 = Q
兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有
U1 = U2 即 = ,即 =
解以上兩式即可得Q1和Q2 。
場強可以根據(jù)E = 關系求解,比較常規(guī)(上下部分的場強相等)。
上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結論所展示的表象。從內在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以
E2 = 4πk(σ ? σ′)= 4πk( ? )
請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。
【答案】(1)真空部分的電量為Q ,介質部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。
〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質,試求與與導體表面接觸的介質表面的極化電荷量。
〖解〗略。
〖答〗Q′= Q 。
四、電容器的相關計算
【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡,試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡的級數(shù),整個網(wǎng)絡A、B兩端的總電容是多少?
【模型分析】這是一個練習電容電路簡化基本事例。
第(1)問中,未給出具體級數(shù),一般結論應適用特殊情形:令級數(shù)為1 ,于是
+ = 解C′即可。
第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程
+ =
【答案】(1)C ;(2)C 。
【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。
【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——
Δ→Y型:Ca =
Cb =
Cc =
Y→Δ型:C1 =
C2 =
C3 =
有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——
【答】約2.23μF 。
【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。
【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。
電量關系:++= 0
電勢關系:ε1 = Uao + Uob = Uao ? Ubo
ε2 = Ubo + Uoc = Ubo ? Uco
解以上三式即可。
【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。
【伸展應用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?
【解說】這是一個結合網(wǎng)絡計算和“孤島現(xiàn)象”的典型事例。
(1)類似“物理情形1”的計算,可得 C總 = Ck = C
所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk =
再算能量儲存就不難了。
(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——
電量關系:Q1′= Q3′
Q2′+ Q3′=
電勢關系:+ =
從以上三式解得 Q1′= Q3′= ,Q2′= ,這樣系統(tǒng)的儲能就可以用得出了。
【答】(1)Ek = ;(2) 。
〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)
☆第七部分完☆
第一部分 力&物體的平衡
第一講 力的處理
一、矢量的運算
1、加法
表達: + = 。
名詞:為“和矢量”。
法則:平行四邊形法則。如圖1所示。
和矢量大小:c = ,其中α為和的夾角。
和矢量方向:在、之間,和夾角β= arcsin
2、減法
表達: = - 。
名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。
法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。
差矢量大。篴 = ,其中θ為和的夾角。
差矢量的方向可以用正弦定理求得。
一條直線上的矢量運算是平行四邊形和三角形法則的特例。
例題:已知質點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內和在T內的平均加速度大小。
解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、和。
根據(jù)加速度的定義 = 得:= ,=
由于有兩處涉及矢量減法,設兩個差矢量 = - ,= - ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。
本題只關心各矢量的大小,顯然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?
答:否;不是。
3、乘法
矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質的不同。
⑴ 叉乘
表達:× =
名詞:稱“矢量的叉積”,它是一個新的矢量。
叉積的大。篶 = absinα,其中α為和的夾角。意義:的大小對應由和作成的平行四邊形的面積。
叉積的方向:垂直和確定的平面,并由右手螺旋定則確定方向,如圖4所示。
顯然,×≠×,但有:×= -×
⑵ 點乘
表達:· = c
名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。
點積的大。篶 = abcosα,其中α為和的夾角。
二、共點力的合成
1、平行四邊形法則與矢量表達式
2、一般平行四邊形的合力與分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二講 物體的平衡
一、共點力平衡
1、特征:質心無加速度。
2、條件:Σ = 0 ,或 = 0 , = 0
例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。
解說:直接用三力共點的知識解題,幾何關系比較簡單。
答案:距棒的左端L/4處。
(學生活動)思考:放在斜面上的均質長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?
解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。
答:不會。
二、轉動平衡
1、特征:物體無轉動加速度。
2、條件:Σ= 0 ,或ΣM+ =ΣM-
如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。
3、非共點力的合成
大小和方向:遵從一條直線矢量合成法則。
作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。
第三講 習題課
1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質量為m的光滑均質球體,試求:β取何值時,夾板對球的彈力最小。
解說:法一,平行四邊形動態(tài)處理。
對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。
由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。
顯然,隨著β增大,N1單調減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。
法二,函數(shù)法。
看圖8的中間圖,對這個三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之間取值,N2的極值討論是很容易的。
答案:當β= 90°時,甲板的彈力最小。
2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?
解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。
靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。
水平方向合力為零,得:支持力N持續(xù)增大。
物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。
對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。
答案:B 。
3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。
解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。
分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。
(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
幾何關系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?
答:變。徊蛔。
(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?
解:和上題完全相同。
答:T變小,N不變。
4、如圖14所示,一個半徑為R的非均質圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。
解說:練習三力共點的應用。
根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。
答案:R 。
(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?
解:三力共點知識應用。
答: 。
4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?
解說:本題考查正弦定理、或力矩平衡解靜力學問題。
對兩球進行受力分析,并進行矢量平移,如圖16所示。
首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。
而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。
對左邊的矢量三角形用正弦定理,有:
= ①
同理,對右邊的矢量三角形,有: = ②
解①②兩式即可。
答案:1 : 。
(學生活動)思考:解本題是否還有其它的方法?
答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。
應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?
解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。
答:2 :3 。
5、如圖17所示,一個半徑為R的均質金屬球上固定著一根長為L的輕質細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?
解說:這是一個典型的力矩平衡的例題。
以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:
f R + N(R + L)= G(R + L) ①
球和板已相對滑動,故:f = μN ②
解①②可得:f =
再看木板的平衡,F(xiàn) = f 。
同理,木板插進去時,球體和木板之間的摩擦f′= = F′。
答案: 。
第四講 摩擦角及其它
一、摩擦角
1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。
2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。
此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。
3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。
二、隔離法與整體法
1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。
在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。
2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。
應用整體法時應注意“系統(tǒng)”、“內力”和“外力”的涵義。
三、應用
1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。
解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。
法一,正交分解。(學生分析受力→列方程→得結果。)
法二,用摩擦角解題。
引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。
再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?
解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。
答:Gsin15°(其中G為物體的重量)。
2、如圖19所示,質量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。
解說:
本題旨在顯示整體法的解題的優(yōu)越性。
法一,隔離法。簡要介紹……
法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。
做整體的受力分析時,內力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(學生活動)地面給斜面體的支持力是多少?
解:略。
答:135N 。
應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。
解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。
法一:隔離法。
由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ
對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。
對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
綜合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
對斜面體,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化簡得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。
答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內部。
法二:引入摩擦角和整體法觀念。
仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。
先看整體的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。
在圖22右邊的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
第二部分 牛頓運動定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點
a、矢量性
b、獨立作用性:ΣF → a ,ΣFx → ax …
c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點
a、同性質(但不同物體)
b、等時效(同增同減)
c、無條件(與運動狀態(tài)、空間選擇無關)
第二講 牛頓定律的應用
一、牛頓第一、第二定律的應用
單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。
應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動,F(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中( )
A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動
B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。
較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調節(jié)的特殊“物體”)
此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出
只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)
進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應用
應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。
在難度方面,“瞬時性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)
進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應用,但數(shù)學處理復雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。
解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。
正交坐標的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨立解T值是成功的。結果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學生活動:用正交分解法解本節(jié)第2題“進階練習2”
進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?
結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時調節(jié)”這一難點(從即將開始的運動來反推)。
知識點,牛頓第二定律的瞬時性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應用
要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。
補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結論又如何?
解:分兩種情況,(1)能拉動;(2)不能拉動。
第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。
第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動,結論不變。
若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。
應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?
解:略。
答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。
2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?
解說:
此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。
答案:F = 。
思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。
解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′= 。
3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、
1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。
(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。
位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。
(學生活動)這兩個加速度矢量有什么關系?
沿斜面方向、垂直斜面方向建x 、y坐標,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學生活動)思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。
解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。
(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設全程時間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進動力學在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動力學方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習題。
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。
一、簡諧運動
1、簡諧運動定義:= -k ①
凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運動的方程
回避高等數(shù)學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。
依據(jù):x = -mω2Acosθ= -mω2
對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規(guī)律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關名詞:(ωt +φ)稱相位,φ稱初相。
運動學參量的相互關系:= -ω2
A =
tgφ= -
3、簡諧運動的合成
a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構成了質點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為
+-2cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;
當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;
當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。
4、簡諧運動的周期
由②式得:ω= ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運動的能量
一個做簡諧運動的振子的能量由動能和勢能構成,即
= mv2 + kx2 = kA2
注意:振子的勢能是由(回復力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機械波
1、波的產(chǎn)生和傳播
產(chǎn)生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)
2、機械波的描述
a、波動圖象。和振動圖象的聯(lián)系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
這個方程展示的是一個復變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。
當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有
r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點和高考要求相同。
5、多普勒效應
當波源或者接受者相對與波的傳播介質運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質的傳播速度v是恒定不變的)——
a、只有接收者相對介質運動(如圖3所示)
設接收者以速度v1正對靜止的波源運動。
如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,
當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、
在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波
n = = =
顯然,在單位時間內,接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f1 。即
f1 = f
顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質運動(如圖4所示)
設波源以速度v2正對靜止的接收者運動。
如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ
在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= = = =
而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>
f2 = = f
當v2背離接收者,或有一定夾角的討論,類似a情形。
c、當接收者和波源均相對傳播介質運動
當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續(xù)…
f3 = f2 = f
關于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運動的證明與周期計算
物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。
模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數(shù)k就有了,求周期就是順理成章的事。
本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…
答案:木板運動周期為2π 。
鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動,F(xiàn)觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據(jù)牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——
= -k
其中k = ,對于這個系統(tǒng)而言,k是固定不變的。
顯然這就是簡諧運動的定義式。
答案:松鼠做簡諧運動。
評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。
二、典型的簡諧運動
1、彈簧振子
物理情形:如圖8所示,用彈性系數(shù)為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ
一、選擇題
1、根據(jù)圖象分析:若沿x軸作勻速運動,通過圖1分析可知,y方向先減速后加速;若沿y軸方向作勻速運動,通過圖2分析可知,x方向先加速后減速。
答案:B
2、乙船能到達A點,則vcos600=u,
過河時間t滿足:t = H/( vsin600), 甲、乙兩船沿垂直于河岸方向的分速度相同,故過河時間相同。在t時間內甲船沿河岸方向的位移為s= (vcos600 + u )t=。
答案:D
3、根據(jù)萬有引力定律:,得:T=
答案:A
4、質點在A、B、C、D四點離開軌道,分別做下拋、平拋、上拋、平拋運動。很明顯,在A點離開軌道比在C、D兩點離開軌道在空間時間短。通過計算在A點下拋落地時間為tA=(6-4)s,在B點平拋落地時間tB=4s,顯然,在A點離開軌道后在空中時間最短。根據(jù)機械能守恒,在D剛拋出時機械能最大,所以落地時速度最大。
答案:AD
5、在軌道上向其運行方向彈射一個物體,由于質量遠小于空間站的質量,空間站仍沿原方向運動。根據(jù)動量守恒,彈出后一瞬間,空間站沿原運行方向的速度變小,提供的向心力(萬有引力)大于需要的向心力,軌道半徑減小,高度降低,在較低的軌道上運行速率變大,周期變小。
答案:C
6、當懸線在豎直狀態(tài)與釘相碰時根據(jù)能量守恒可知,小球速度不變;但圓周運動的半徑減小,需要的向心力變大,向心加速度變大,繩子上的拉力變大。
答案:BD
7、根據(jù)萬有引力定律:可得:M=,可求出恒星質量與太陽質量之比,根據(jù)可得:v=,可求出行星運行速度與地球公轉速度之比。
答案:AD
8、衛(wèi)星仍圍繞地球運行,所以發(fā)射速度小
答案:CD
9、同步衛(wèi)星隨地球自轉的方向是從東向西,把同步衛(wèi)星從赤道上空3.6萬千米、東經(jīng)103°處,調整到104°處,相對于地球沿前進方向移動位置,需要增大相對速度,所以應先下降高度增大速度到某一位置再上升到原來的高度。
答案:A
10、開始轉動時向心力由靜摩擦力提供,但根據(jù)F=mrω2可知,B需要的向心力是A的兩倍。所以隨著轉速增大,B的摩擦力首先達到最大靜摩擦力。繼續(xù)增大轉速,繩子的張力增大,B的向心力由最大靜摩擦力提供,A的向心力由靜摩擦力和繩子的張力的合力提供,隨著轉速的增大,B需要的向心力的增量(繩子張力的增量)比A需要的向心力的增量大,因而A指向圓心的摩擦力逐漸減小直到為0然后反向增大到最大靜摩擦力。所以,B受到的靜摩擦力先增大,后保持不變;A受到的靜摩擦力是先減小后增大;A受到的合外力就是向心力一直在增大。
答案:BD
二、填空題
11、圓盤轉動時,角速度的表達式為ω= , T為電磁打點計的時器打點的時間間隔,r為圓盤的半徑,x2、x1是紙帶上選定的兩點分別對應米尺上的刻度值,n為選定的兩點間的打點數(shù)(含兩點)。地紙帶上選取兩點(間隔盡可能大些)代入上式可求得ω= 6.8rad/s。
12、 (1)斜槽末端切線方向保持水平;從同一高度。
(2)設時間間隔為t, x
= v0t, y2-y1=gt2
,解得: v0=.將x=
三、計算題
13.解:⑴在行星表面,質量為m的物體的重力近似等于其受到的萬有引力,則
g=
得:
⑵行星表面的環(huán)繞速度即為第一宇宙速度,做勻速圓周運動的向心力是萬有引力提供的,則
v1=
得:
14.解析:用r表示飛船圓軌道半徑,有r =R +H=6.71×l
由萬有引力定律和牛頓定律,得 , 式中M表示地球質量,m表示飛船質量,T表示飛船繞地球運行的周期,G表示萬有引力常量.
利用及上式, 得 ,代入數(shù)值解得T=5.28×103s,
出艙活動時間t=25min23s=1523s, 航天員繞行地球角度 =1040
15.解:(1)這位同學對過程的分析錯誤,物塊先沿著圓柱面加速下滑,然后離開圓柱面做斜下拋運動,離開圓柱面時的速率不等于。
(2)a、設物塊離開圓柱面時的速率為,
解得:
(2)b、由: 得:
落地時的速率為
16.解:對子彈和木塊應用動量守恒定律:
所以
對子彈、木塊由水平軌道到最高點應用機械能守恒定律,
取水平面為零勢能面:有
所以
由平拋運動規(guī)律有:
解得:
所以,當R =
最大值Smax =
17.解:(1)
(2)設人在B1位置剛好看見衛(wèi)星出現(xiàn)在A1位置,最后
在B2位置看到衛(wèi)星從A2位置消失,
OA1=2OB1
有 ∠A1OB1=∠A2OB2=π/3
從B1到B2時間為t
則有
18.解: (1)設 A、B的圓軌道半徑分別為、,由題意知,A、B做勻速圓周運動的角速 度相同,設其為。由牛頓運動定律,有
設 A、B之間的距離為,又,由上述各式得
, ①
由萬有引力定律,有
將①代入得
令
比較可得
②
(2)由牛頓第二定律,有
③
又可見星 A的軌道半徑
④
由②③④式解得
⑤
(3)將代入⑤式,得
代入數(shù)據(jù)得
⑥
,將其代入⑥式得
⑦
可見,的值隨 n的增大而增大,試令,得
⑧
若使⑦式成立,則 n 必大于 2,即暗星 B 的質量必大于,由此得出結
論:暗星有可能是黑洞。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com