題目列表(包括答案和解析)
第二部分 牛頓運動定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點
a、矢量性
b、獨立作用性:ΣF → a ,ΣFx → ax …
c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點
a、同性質(但不同物體)
b、等時效(同增同減)
c、無條件(與運動狀態(tài)、空間選擇無關)
第二講 牛頓定律的應用
一、牛頓第一、第二定律的應用
單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。
應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中( )
A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動
B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。
較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調節(jié)的特殊“物體”)
此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出
只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)
進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應用
應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。
在難度方面,“瞬時性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)
進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應用,但數(shù)學處理復雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。
解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。
正交坐標的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨立解T值是成功的。結果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學生活動:用正交分解法解本節(jié)第2題“進階練習2”
進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?
結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時調節(jié)”這一難點(從即將開始的運動來反推)。
知識點,牛頓第二定律的瞬時性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應用
要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。
補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結論又如何?
解:分兩種情況,(1)能拉動;(2)不能拉動。
第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。
第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動,結論不變。
若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。
應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?
解:略。
答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。
2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?
解說:
此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。
答案:F = 。
思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。
解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′= 。
3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、
1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。
(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。
位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。
(學生活動)這兩個加速度矢量有什么關系?
沿斜面方向、垂直斜面方向建x 、y坐標,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學生活動)思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。
解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。
(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設全程時間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進動力學在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動力學方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習題。
U/V | 0.40 | 0.80 | 1.20 | 1.60 | 2.00 | 2.40 | 2.80 |
I/A | 0.10 | 0.16 | 0.20 | 0.23 | 0.25 | 0.26 | 0.27 |
(03年江蘇卷)(13分)圖1所示為一根豎直懸掛的不可伸長的輕繩,下端栓一小物塊A,上端固定在C點且與一能測量繩的拉力的測力傳感器相連。已知有一質量為m0的子彈B沿水平方向以速度v0射入A內(未穿透),接著兩者一起繞C點在豎直面內做圓周運動。在各種阻力都可忽略的條件下測力傳感器測得繩的拉力F隨時間t的變化關系如圖2所示。已知子彈射入的時間極短,且圖2中t=0為A、B開始以相同速度運動的時刻。根據(jù)力學規(guī)律和題中(包括圖)提供的信息,對反映懸掛系統(tǒng)本身性質的物理量(例如A的質量)及A、B一起運動過程中的守恒量,你能求得哪些定量的結果?
我國的“嫦娥奔月”月球探測工程已經(jīng)啟動,分“繞、落、回”三個發(fā)展階段:在2007年已經(jīng)發(fā)射了一顆圍繞月球飛行的“嫦娥一號”衛(wèi)星,將在2012年前后發(fā)射一顆月球軟著陸器,在2017年前后發(fā)射一顆返回式月球軟著陸器,進行首次月球樣品自動取樣并安全返回地球.設想著陸器完成了對月球表面的考察任務后,由月球表面回到圍繞月球做圓周運動的軌道艙,如圖19所示.為了安全,返回的著陸器與軌道艙對接時,必須具有相同的速度。設返回的著陸器質量為m,月球表面的重力加速度為g,月球的半徑為R,月球的自轉周期為T,軌道艙到月球中心的距離為r,已知著陸器從月球表面返回軌道艙的過程中需克服月球引力做功,不計月球表面大氣對著陸器的阻力和月球自轉的影響,則
(1)著陸器與返回艙對接時的速度大小是多少?
(2)在月球表面的著陸器至少需要獲得多少能量才能返回軌道艙?
(08年茂名市二模)(5分,選修物理3-4) 如圖13所示為某一簡諧橫波在t=0時刻的波形圖,由此可知該波沿 傳播,該時刻a、b、c三點速度最大的是 點,加速度最大的是 點,從這時刻開始,第一次最快回到平衡位置的是 點。若t=0.02s時質點c第一次到達波谷處,則此波的波速為 m/s。
一、選擇題(本題共10小題,每題4分,共40分)
1.解析:當θ較小時物塊與木板間的摩擦力為靜摩擦力,摩擦力大小與物塊重力沿板方向的分力大小相等,其大小為:,按正弦規(guī)律變化;當θ較大時物塊與木板間的摩擦力為滑動摩擦力,摩擦力大小為:,按余弦規(guī)律變化,故選B.答案:B
2.解析:物體緩慢下降過程中,細繩與豎直方向的夾角θ不斷減小,可把這種狀態(tài)推到無限小,即細繩與豎直方向的夾角為零;由平衡條件可知時,,,所以物體緩慢下降過程中,F(xiàn)逐漸減小,F(xiàn)f逐漸減小。故選D。
3. 解析: 由于二者間的電場力是作用力與反用力,若以
B為研究對象,絕緣手柄對B球的作用力未知,陷入困境,
因此以A為研究對象。設A帶電量為q,B帶電量為Q,
AB間距離為a,OB間距離為h ,由庫侖定律得
,由三角形OAB得,以B球為研究對象,
受力如圖3所示,由平衡條件得,由以上三式
得,
所以,故正確選項為D。
4.解析:設兩三角形滑塊的質量均為m,對整體有:
滑塊B受力如圖所示,則對B有:,
可解得:
5.解析:在增加重力時,不知哪根繩子先斷.故我們選擇O點為研究對象,先假設OA不會被拉斷,OB繩上的拉力先達最大值,則:,由拉密定理得:
解得:,OA將被拉斷.前面假設不成立.
再假設OA繩子拉力先達最大值,,此時,由拉密定理得:
解得:,故OB將不會斷.
此時,,故懸掛重物的重力最多只能為,所以C正確,答案C。
6.解析:物體受力平衡時,無論如何建立直角坐標系,兩個方向上的合力均為零。若以OA和垂直于OA方向建立坐標系,可以看出該力沿F1方向,A物體不能平衡;以水平和豎直方向建立坐標系,F4不能平衡。因此選BC,答案:BC
7.解析:由平衡知識可得,繩中拉力FT的大小不變,總等于物A的重力;假設汽車在滑輪的正下方,則繩中拉力FT的水平分量為零,此時汽車對地面的壓力FN最小,汽車受到的水平向右的的摩擦力Ff為零;當汽車距滑輪下方為無窮遠處時,繩中拉力FT的豎直分量為零,汽車對地面的壓力FN最大,汽車受到的水平向右的的摩擦力Ff最大,故選B.答案:B
8.解析:本題“濾速器”即速度選擇器,工作條件是電場力與洛侖茲力平衡,即qvB=qE,所以v=E/B。顯然“濾速器”只濾“速”,與粒子電性無關,故可假設粒子電性為正,若a板電勢較高,則電場力方向指向b板,洛侖茲力應指向a板方可滿足條件,由左手定則可得選項A是正確的;若a板電勢較低,同理可得選項D是正確的。答案:AD。
9.解析:若AB逆時針旋轉,則A對皮帶的靜摩擦力向左、B對皮帶的靜摩擦力向右才能將上方皮帶拉緊,因此皮帶相對A輪有向右運動趨勢,A為從動輪,B正確;同理,D項正確。答案:BD。
10.D解析:對物體受力分析,作出力的矢量三角形,就可解答。
二、填空和實驗題
11.Mg 將第2、3塊磚看成一個整體。由于對稱性,第1、4塊磚對2、3整體的摩擦力必定相同,且二者之和等于2、3整體的重力。所以第2與第1塊磚的摩擦力大小為mg。
12.微粒在重力、電場力和洛侖茲力作用下處于平衡狀態(tài),受力分析如圖,可知,
得電場強度,磁感應強度
13.探究一個規(guī)律不應該只用特殊的來代替一般。所以本實驗中兩個分力的大小應不相等,所以橡皮條也就不在兩繩夾角的平分線上,而兩繩的長度可以不等。所以A、B不對。實驗要求作用的效果要相同,因此O點的位置不能變動。因此D不對。實驗中合力的大小應是量出來而不是算出來的,所以F不對。答案:C。
14.(1)因紙質量較小,兩者間摩擦力也小,不易測量。紙貼在木板上,可增大正壓力,從而增大滑動摩擦力,便于測量。
(2)①參考方案:只要將測力計的一端與木塊A相連接,測力計的另一端與墻壁或豎直擋板之類的固定物相連.用手通過輕繩拉動木板B,讀出并記下測力計的讀數(shù)F,測出木塊A的質量m.
②
③彈簧測力計
三、計算題
15.解:當水平拉力F=0時,輕繩處于豎直位置時,繩子張力最小T1=G
當水平拉力F=
因此輕繩的張力范圍是G≤≤
。2)設在某位置球處于平衡位置由平衡條件得
所以即 ,得圖象如圖所示。
16.解析:(1)當S接1時,棒剛好靜止,則MN所受的安培力方向豎直向上,由左手定則可知,磁場的方向垂直紙面向里。
(2)設導軌的間距為L,MN棒的的質量為m。當S接1時,導體棒剛好靜止,則
mg=
設最終穩(wěn)定時MN的速率為v,則
BI’L=mg 而 解得:m2/s
17.解析: 因為環(huán)2的半徑為環(huán)3的2倍,環(huán)2的周長為環(huán)3的2倍,三環(huán)又是用同種金屬絲制成的,所以環(huán)2的質量為環(huán)3的2倍。設m為環(huán)3的質量,那么三根繩承擔的力為3mg,于是,環(huán)1與環(huán)3之間每根繩的張力FT1=mg。沒有摩擦,繩的重量不計,故每根繩子沿其整個長度上的張力是相同的(如圖所示)FT1= FT2=mg。
對環(huán)3,平衡時有:
由此
環(huán)2中心與環(huán)3中心之距離:,
即
18.解析:熱鋼板靠滾子的摩擦力進入滾子之間,根據(jù)摩擦力和壓力的關系,便可推知鋼板的厚度
以鋼板和滾子接觸的部分為研究對象,其受力情況如圖所示,鋼板能進入滾子之間,則在水平方向有: (式中),所以由兩式可得:μ≥tanθ
設滾子的半徑為R,再由圖中的幾何關系可得
,將此式代入得b≤(d+a)- 代入數(shù)據(jù)得b≤
即鋼板在滾子間勻速移動時,鋼板進入流子前厚度的最大值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com