解:如圖.面積建議:考查積分的題目常見(jiàn)的有兩類.一類是簡(jiǎn)單的積分的運(yùn)算,另一類是求封閉圖形的面積.建議重點(diǎn)訓(xùn)練求面積的問(wèn)題.一舉兩得. 查看更多

 

題目列表(包括答案和解析)

(三選一,考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中圓C的參數(shù)方程為
x=1+2cosθ
y=
3
+2sinθ
(θ為參數(shù)),則圓C的普通方程為
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
3
3

查看答案和解析>>

為了求函數(shù)y=x2,函數(shù)x=1,x軸圍成的曲邊三角形的面積S,古人想出了兩種方案求其近似解(如圖):第一次將區(qū)間[0,1]二等分,求出陰影部分矩形面積,記為S2;第二次將區(qū)間[0,1]三等分,求出陰影部分矩形面積,記為S3;第三次將區(qū)間[0,1]四等分,求出S4…依此類推,記圖1中Sn=an,圖2中Sn=bn,其中n≥2.
(1)求a2,a3,a4;
(2)求an的通項(xiàng)公式,并證明an
1
3

(3)求bn的通項(xiàng)公式,類比第②步,猜想bn的取值范圍.并由此推出S的值(只需直接寫出bn的范圍與S的值,無(wú)須證明).
參考公式:12+22+32+…+(n-1)2+n2=
1
6
n(n+1)(2n+1)

查看答案和解析>>

已知問(wèn)題:上海迪斯尼工程某 施工工地上有一堵墻,工程隊(duì)欲將長(zhǎng)為4a(a>0)的建筑護(hù)欄(厚度不計(jì))借助這堵墻圍成矩形的施工區(qū)域(如圖1),求所得區(qū)域的最大面積.解決這一問(wèn)題的一種方法是:作出護(hù)欄關(guān)于墻面的軸對(duì)稱圖形(如圖2),則原問(wèn)題轉(zhuǎn)化為“已知矩形周長(zhǎng)為8a,求面積的最大值”從而輕松獲解.參考這種借助對(duì)稱圖形解決問(wèn)題的方法,對(duì)于下列情形:已知兩堵墻互相垂直圍成“L”形,工程隊(duì)將長(zhǎng)為4a(a>0)的建筑護(hù)欄借助墻角圍成四邊形的施工區(qū)域(如圖3),可求得所圍區(qū)域的最大面積為
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

為了求函數(shù),函數(shù),軸圍成的曲邊三角形的面積,古人想出了兩種方案求其近似解(如圖):第一次將區(qū)間二等分,求出陰影部分矩形面積,記為;第二次將區(qū)間三等分,求出陰影部分矩形面積,記為;第三次將區(qū)間四等分,求出

……依此類推,記方案一中,方案二中,其中

①  求

②  求的通項(xiàng)公式,并證明

③  求的通項(xiàng)公式,類比第②步,猜想的取值范圍。并由此推出的值(只需直接寫出的范圍與的值,無(wú)須證明)

參考公式:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

做題(請(qǐng)考生在以下三個(gè)小題中任選一題做答,如果多做,則按所做的第一題評(píng)閱記分)

A.(選修4—4坐標(biāo)系與參數(shù)方程)已知點(diǎn)曲線上任意一點(diǎn),則點(diǎn)到直線的距離的最小值是         .
B.(選修4—5不等式選講)不等式的解集是     .
C.(選修4—1幾何證明選講)如圖所示,
分別是圓的切線,且,延長(zhǎng)點(diǎn),則的面積是      .

查看答案和解析>>


同步練習(xí)冊(cè)答案