題目列表(包括答案和解析)
1.請(qǐng)閱讀材料并填空:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連結(jié)PP′.
根據(jù)李明同學(xué)的思路,進(jìn)一步思考后可求得∠BPC=____°,等邊△ABC的邊長(zhǎng)為____.
2.請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
1.請(qǐng)閱讀材料并填空:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連結(jié)PP′.
根據(jù)李明同學(xué)的思路,進(jìn)一步思考后可求得∠BPC=____°,等邊△ABC的邊長(zhǎng)為____.
2.請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
(2010四川樂山)勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊(yùn)含著豐富的科學(xué)知識(shí)和人文價(jià)值.圖(6)是一棵由正方形和含30°角的直角三角形按一定規(guī)律長(zhǎng)成的勾股樹,樹主干自下而上第一個(gè)正方形和第一個(gè)直角三角形的面積之和為S1,第二個(gè)正方形和第二個(gè)直角三角形的面積之和為S2,…,第n個(gè)正方形和第n個(gè)直角三角形的面積之和為Sn.設(shè)第一個(gè)正方形的邊長(zhǎng)為1.
圖(6)
請(qǐng)解答下列問(wèn)題:
(1)S1=__________;
(2)通過(guò)探究,用含n的代數(shù)式表示Sn,則Sn=__________.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com