題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿(mǎn)分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿(mǎn)分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿(mǎn)分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線(xiàn)與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
一. 選擇題(每小題5分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
A
B
D
C
D
B
C
B
C
A
二. 填空題(每小題5分)
11. 12。 13。-1 14。 15。
三. 解答題
……………2分
且2R=,由正弦定理得:
化簡(jiǎn)得: ……………4分
由余弦定理:
……………11分
所以,……………12分
17.解:(I)記事件A=“該單位所派的選手都是男職工” ……………1分
則P(A)= ……………3分
(II)記事件B=“該單位男職工、女職工選手參加比賽” ……………4分
則P(B)=……………7分
(III)設(shè)該單位至少有一名選手獲獎(jiǎng)的概率為P,則
或……………12分
18.(解法一)(I)取AB的中點(diǎn)為Q,連接PQ,則,所以,為AC與BD所成角……………2分
又CD=BD=1,,而PQ=1,DQ=1
……………4分
(II)過(guò)D作,連接CR,,
……………6分
在,
……………8分
……………9分
(解法二)(I)如圖,以D為坐標(biāo)原點(diǎn),DB、AD、DC所在直線(xiàn)分別為x,y,z軸建立直角坐標(biāo)系。則A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)
,……2分
所以,異面直線(xiàn)AC與BD所成角的余弦值為……………4分
(II)面DAB的一個(gè)法向量為………5分
設(shè)面ABC的一個(gè)法向量,則
,取,……………7分
則
……………8分
…………9分
(III)不存在。若存在S使得AC,則,與(I)矛盾。故不存在…12分
19.解:(I)在區(qū)間上遞減,其導(dǎo)函數(shù)……………1分
……………4分
故是函數(shù)在區(qū)間上遞減的必要而不充分的條件……………5分
(II)
……………6分
當(dāng)a>0時(shí),函數(shù)在()上遞增,在上遞減,在上遞增,故有
……………9分
當(dāng)a〈0時(shí),函數(shù)在上遞增,只要
令,則…………11分
所以在上遞增,又
不能恒成立。
故所求的a的取值范圍為……………12分
20.解:(I)由條件,M到F(1,0)的距離等于到直線(xiàn) x= -1的距離,所以,曲線(xiàn)C是以F為焦點(diǎn)、直線(xiàn) x= -1為準(zhǔn)線(xiàn)的拋物線(xiàn),其方程為……………3分
(II)設(shè),代入得:……………5分
由韋達(dá)定理
,
……………6分
,只要將A點(diǎn)坐標(biāo)中的換成,得……7分
……………8分
所以,最小時(shí),弦PQ、RS所在直線(xiàn)的方程為,
即或……………9分
(III),即A、T、B三點(diǎn)共線(xiàn)。
是否存在一定點(diǎn)T,使得,即探求直線(xiàn)AB是否過(guò)定點(diǎn)。
由(II)知,直線(xiàn)AB的方程為………10分
即,直線(xiàn)AB過(guò)定點(diǎn)(3,0).……………12分
故存在一定點(diǎn)T(3,0),使得……………13分
21.解:(I)因?yàn)榍(xiàn)在處的切線(xiàn)與平行
……………4分
,
(III)。由(II)知:=
,從而……………11分
,
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com