題目列表(包括答案和解析)
已知函數(shù)f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二問中,∵xÎ[0, ],∴2x-Î[-,],
∴當(dāng)2x-=-,即x=0時,f(x)min=-,
當(dāng)2x-=, 即x=時,f(x)max=1
第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用構(gòu)造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴當(dāng)2x-=-,即x=0時,f(x)min=-, ……………………8分
當(dāng)2x-=, 即x=時,f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
函數(shù)f(x)=3sin(3x+φ)在區(qū)間[a,b]上是增函數(shù),且f(a)=-2,f(b)=2,則g(x)=2cos(2x+φ)在[a,b]上( )
A.是增函數(shù)
B.是減函數(shù)
C.可以取得最大值
D.可以取得最小值
(本題滿分8分)求過點A(2,-1),且和直線x-y=1相切,圓心在直線y=-2x上的圓的方程.
(12分)若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,試求;
(2)若A∩B=∅,求實數(shù)m的取值范圍;
(3)若A∩B=A,求實數(shù)m的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com