15.如圖2.已知A.D.B.C分別為過(guò)拋物線焦點(diǎn)F的直線與該拋物線和圓的交點(diǎn).則 . 查看更多

 

題目列表(包括答案和解析)

如圖2-2-3,已知ABCD為平行四邊形,過(guò)點(diǎn)A和B的圓與AD、BC分別交于E、F.求證:C、D、E、F四點(diǎn)共圓.

圖2-2-3

查看答案和解析>>

如圖2-5-11,已知⊙O1和⊙O2相交于點(diǎn)A、B,過(guò)點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.

圖2-5-11

(1)求證:AD∥EC;

(2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn).(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)p為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜線分別為k1、k2.①證明:
1
k1
-
3
k2
=2
;②問(wèn)直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿(mǎn)足kOA+kOB+kOC+kOD=0?若存在,求出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)已知拋物線G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過(guò)拋物線G的焦點(diǎn)的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點(diǎn),試證明|AC|•|BD|為定值;
(III)過(guò)A、B分別作拋物G的切線l1,l2且l1,l2交于點(diǎn)M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

精英家教網(wǎng)已知ABCD,A'B'C'D'都是正方形(如圖),而A'、B'、C'、D'分別把AB、BC、CD、DA分為m:n,設(shè)AB=1.
(1)求A'B'C'D'的面積;
(2)求證A'B'C'D'的面積不小于
12

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??? 8分

,∴,???????????? 10分

,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,.則,,,.??????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),對(duì)稱(chēng)軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.???????????????????????? 2分

當(dāng)時(shí),.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

????????????????????? 10分

可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.??? 12分

 

21.解:(Ⅰ)設(shè),

,,,

,,

.∵,

,∴,∴.?????????????????? 2分

則N(c,0),M(0,c),所以,

,則

∴橢圓的方程為.?????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????? 5分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

,

,,?????????????????? 7分

,

,.????? 8分

.??????????? 9分

(或).

設(shè),則,,

,則,

時(shí)單調(diào)遞增,????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,

.???????????????????????????? 12分

(或

∴S關(guān)于u在區(qū)間單調(diào)遞增,???????????????????? 11分

,,.)???????????????? 12分

 

22.解:(Ⅰ)因?yàn)?sub>,,則,   1分

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.???????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即為,???????????? 4分

,∴,?? 5分

,則,∵,∴,上遞增,

,從而,故上也單調(diào)遞增,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

,

,

,

………

,??????????????????????? 10分

疊加得:

.???????????????????? 12分

.???????????????????? 14


同步練習(xí)冊(cè)答案