(13)已知正數(shù)滿足.則的最小值為 , 查看更多

 

題目列表(包括答案和解析)

(09年濱州一模理)已知正數(shù)滿足,則的最小值為                  ;

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時(shí),f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時(shí),f(x)取得極小值數(shù)學(xué)公式
(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)y=f(x),任取t∈R,定義集合:At={y|y=f(x)},點(diǎn)P(t,f(t)),Q(x,f(x))滿足|PQ|數(shù)學(xué)公式}.設(shè)Mt,mt分別表示集合At中元素的最大值和最小值,記h(t)=Mt-mt.則
(1)若函數(shù)f(x)=x,則h(1)=______;
(2)若函數(shù)f(x)=sin數(shù)學(xué)公式x,則h(t)的最小正周期為______.

查看答案和解析>>

已知函數(shù)f(x)的定義域?yàn)椋?,1],且同時(shí)滿足:①f(1)=3;②f(x)≥2恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2.

(1)試求函數(shù)f(x)的最大值和最小值;

(2)試比較f(n)與n+2的大小(n∈N);

(3)某人發(fā)現(xiàn):當(dāng)x=n(n∈N)時(shí),有f(x)<2x+2.由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請(qǐng)你判斷此猜想是否正確,并說明理由.

查看答案和解析>>

一、選擇題(每小題5分,共計(jì)60分)

ABADD  CACAC  AB

二、填空題(每小題4分,共計(jì)16分)

(13)4;(14);(15);(16)①④.

三、解答題:

17.解:(本小題滿分12分)

(Ⅰ) 由題意

   

          

          

    由題意,函數(shù)周期為3,又>0,;

   (Ⅱ) 由(Ⅰ)知

      

      

又x,的減區(qū)間是.

(18) (本小題滿分12分)

解:(1)隨機(jī)變量的所有可能取值為

所以隨機(jī)變量的分布列為

0

1

2

3

4

5

   (2)∵隨機(jī)變量

        ∴

19. (本小題滿分12分)

解:(Ⅰ)∵   底面ABCD是正方形,

∴AB⊥BC,

又平面PBC⊥底面ABCD  

平面PBC ∩  平面ABCD=BC

∴AB  ⊥平面PBC

又PC平面PBC

∴AB  ⊥CP  ………………3分

(Ⅱ)解法一:體積法.由題意,面,

 

中點(diǎn),則

.

再取中點(diǎn),則   ………………5分

設(shè)點(diǎn)到平面的距離為,則由

.                   ………………7分

解法二:

中點(diǎn),再取中點(diǎn)

過點(diǎn),則

中,

∴點(diǎn)到平面的距離為。  ………………7分

解法三:向量法(略)

(Ⅲ)

就是二面角的平面角.

∴二面角的大小為45°.   ………………12分

方法二:向量法(略).

(20)(本小題滿分12分)

解:(Ⅰ)方法一:∵

.           

設(shè)直線

并設(shè)l與g(x)=x2相切于點(diǎn)M()

  ∴2

代入直線l方程解得p=1或p=3.

                             

方法二:  

將直線方程l代入

解得p=1或p=3 .                                      

(Ⅱ)∵,                                

①要使為單調(diào)增函數(shù),須恒成立,

恒成立,即恒成立,

,所以當(dāng)時(shí),為單調(diào)增函數(shù);   …………6分

②要使為單調(diào)減函數(shù),須恒成立,

恒成立,即恒成立,

,所以當(dāng)時(shí),為單調(diào)減函數(shù).                

綜上,若為單調(diào)函數(shù),則的取值范圍為.………8分

 

(21) (本小題滿分12分)

(1)∵直線的方向向量為

∴直線的斜率為,又∵直線過點(diǎn)

∴直線的方程為

,∴橢圓的焦點(diǎn)為直線軸的交點(diǎn)

∴橢圓的焦點(diǎn)為

,又∵

,∴

∴橢圓方程為  

(2)設(shè)直線MN的方程為

,

設(shè)坐標(biāo)分別為

   (1)    (2)        

>0

,

,顯然,且

代入(1) (2),得

,得

,即

解得.

 (22) (本小題滿分14分)

(1)  解:過的直線方程為

聯(lián)立方程消去

(2)

是等比數(shù)列

  ,;

(III)由(II)知,,要使恒成立由=>0恒成立,

即(-1)nλ>-(n1恒成立.

?。當(dāng)n為奇數(shù)時(shí),即λ<(n1恒成立.

又(n1的最小值為1.∴λ<1.                                                              10分

?。當(dāng)n為偶數(shù)時(shí),即λ>-(n-1恒成立,

又-(n1的最大值為-,∴λ>-.                                                 11分

即-<λ<1,又λ≠0,λ為整數(shù),

λ=-1,使得對(duì)任意n∈N*,都有                                                                                    


同步練習(xí)冊(cè)答案