(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程, 查看更多

 

題目列表(包括答案和解析)

已知橢圓的標(biāo)準(zhǔn)方程為
x2
6-m
+
y2
m-1
=1

(1)若橢圓的焦點(diǎn)在x軸,求m的取值范圍;          
(2)試比較m=2與m=3時(shí)兩個(gè)橢圓哪個(gè)更扁.

查看答案和解析>>

已知橢圓的標(biāo)準(zhǔn)方程為
x2
6-m
+
y2
m-1
=1
,
(1)若橢圓的焦點(diǎn)在x軸,求m的取值范圍;
(2)試比較m=2與m=3時(shí)兩個(gè)橢圓哪個(gè)更扁.

查看答案和解析>>

橢圓的中心在原點(diǎn),其左焦點(diǎn)為F(-
2
,0),左準(zhǔn)線l的方程為x=-
3
2
2
.PQ是過(guò)點(diǎn)F且與x軸不垂直的弦,PQ的中點(diǎn)M到左準(zhǔn)線l的距離為d.
(1)求此橢圓的方程;    
(2)求證:
PQ
d
為定值;
(3)在l上是否存在點(diǎn)R,使△PQR為正三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,焦點(diǎn)在x軸上,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為4 ( 
2
-1 )
,
(1)求此橢圓方程,并求出準(zhǔn)線方程;
(2)若P在左準(zhǔn)線l上運(yùn)動(dòng),求tan∠F1PF2的最大值.

查看答案和解析>>

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:

(1)過(guò)點(diǎn)P1,1),P2(-,-);

(2)和橢圓=1共準(zhǔn)線,且離心率為.

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

    1. <tbody id="rngj6"><acronym id="rngj6"><fieldset id="rngj6"></fieldset></acronym></tbody>

      1,3,5

      三、解答題

      (17)解:(Ⅰ)-             ---------------------------2分

      高三年級(jí)人數(shù)為-------------------------3分

      現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級(jí)抽取的人數(shù)為

      (人).                       --------------------------------------6分

      (Ⅱ)設(shè)“高三年級(jí)女生比男生多”為事件,高三年級(jí)女生、男生數(shù)記為.

      由(Ⅰ)知

      則基本事件空間包含的基本事件有

      共11個(gè),     ------------------------------9分

      事件包含的基本事件有

      共5個(gè)   

                      --------------------------------------------------------------11分

      答:高三年級(jí)女生比男生多的概率為.  …………………………………………12分

      (18)解:(Ⅰ)  …………2分

      中,由于,

                                              …………3分

      ,

                             

      ,所以,而,因此.…………6分

         (Ⅱ)由

      由正弦定理得                                …………8分

      ,

      ,由(Ⅰ)知,所以    …………10分

      由余弦弦定理得 ,     …………11分

      ,

                                                     …………12分

      (19)(Ⅰ)證明:∵、分別為、的中點(diǎn),∴.

           又∵平面平面

      平面                                         …………4分

      (Ⅱ)∵,,∴平面.

      又∵,∴平面.

      平面,∴平面平面.               …………8分

      (Ⅲ)∵平面,∴是三棱錐的高.

      在Rt△中,.

          在Rt△中,.

       ∵的中點(diǎn),

      ,

      .        ………………12分

      (20)解:(Ⅰ)依題意得

                                   …………2分

       解得,                                             …………4分

      .       …………6分

         (Ⅱ)由已知得,                  …………8分

                                                               ………………12分

      (21)解:(Ⅰ)

            令=0,得                        ………2分

      因?yàn)?sub>,所以可得下表:

      0

      +

      0

      -

      極大

                                                                ………………4分

      因此必為最大值,∴,因此,

           ,

          即,∴

       ∴                                       ……………6分

      (Ⅱ)∵,∴等價(jià)于, ………8分

       令,則問(wèn)題就是上恒成立時(shí),求實(shí)數(shù)的取值范圍,為此只需,即,                 …………10分

      解得,所以所求實(shí)數(shù)的取值范圍是[0,1].            ………………12分

      (22)解:(Ⅰ)由得,,

      所以直線過(guò)定點(diǎn)(3,0),即.                       …………………2分

       設(shè)橢圓的方程為,

      ,解得,

      所以橢圓的方程為.                    ……………………5分

      (Ⅱ)因?yàn)辄c(diǎn)在橢圓上運(yùn)動(dòng),所以,      ………………6分

      從而圓心到直線的距離

      所以直線與圓恒相交.                             ……………………9分

      又直線被圓截得的弦長(zhǎng)

      ,       …………12分

      由于,所以,則,

      即直線被圓截得的弦長(zhǎng)的取值范圍是.  …………………14分

       


      同步練習(xí)冊(cè)答案