如圖.在四棱錐P―ABCD中.底面ABCD是矩形.側(cè)棱PA垂直于底面.E.F分別是AB.PC的中點(diǎn).(1)求證:CD⊥PD;(2)求證:EF∥平面PAD;(3)當(dāng)平面PCD與平面ABCD成多大角時(shí).直線EF⊥平面PCD? 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點(diǎn)O為球心、BD為直徑的球面交PD于點(diǎn)M,
(1)求證:平面ABM⊥平面PCD;
(2)求直線PC與平面ABM所成的角;
(3)求點(diǎn)O到平面ABM的距離.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C-PB-D的大。

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
(3)若AB=4,BC=3,求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M、N分別為PA、BC的中點(diǎn),PD⊥平面ABCD,且PD=AD=
2
,CD=1.
(1)證明:MN∥平面PCD;
(2)證明:MC⊥BD;
(3)求二面角A-PB-D的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(Ⅰ)證明AD⊥平面PAB;
(Ⅱ)求異面直線PC與AD所成的角的大。
(Ⅲ)求二面角P-BD-A的大。

查看答案和解析>>

難點(diǎn)磁場

1.(1)證明:∵A1C1=B1C1,D1A1B1的中點(diǎn),∴C1D1A1B1D1

又∵平面A1ABB1⊥平面A1B1C1,∴C1D1⊥平面A1B1BA,

AB16ec8aac122bd4f6e平面A1ABB1,∴AB1C1D1.

(2)證明:連結(jié)D1D,∵DAB中點(diǎn),∴DD16ec8aac122bd4f6eCC1,∴C1D1CD,由(1)得CDAB1,又∵C1D1⊥平面A1ABB1C1BAB1,由三垂線定理得BD1AB1,

又∵A1DD1B,∴AB1A1DCDA1D=D,∴AB1⊥平面A1CD.

(3)解:由(2)AB1⊥平面A1CDO,連結(jié)CO1得∠ACO為直線AC與平面A1CD所成的角,∵AB1=3,AC=A1C1=2,∴AO=1,∴sinOCA=6ec8aac122bd4f6e

∴∠OCA=6ec8aac122bd4f6e.

殲滅難點(diǎn)訓(xùn)練

一、1.解析:如圖,設(shè)A1C1B1D1=O1,∵B1D1A1O1,B1D1AA1,∴B1D1⊥平面AA1O1,故平面AA1O1AB1D1,交線為AO1,在面AA1O1內(nèi)過A1A1HAO1H,則易知A1H長即是點(diǎn)A1到平面AB1D1的距離,在Rt△A1O1A中,A1O1=6ec8aac122bd4f6e,AO1=36ec8aac122bd4f6e,由A1O1?A1A=h?AO1,可得A1H=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

答案:C?

2.解析:如圖,在l上任取一點(diǎn)P,過P分別在α、β內(nèi)作a′∥a,b′∥b,在a′上任取一點(diǎn)A,過AACl,垂足為C,則ACβ,過CCBb′交b′于B,連AB,由三垂線定理知ABb′,

6ec8aac122bd4f6e

∴△APB為直角三角形,故∠APB為銳角.

答案:C

二、3.解析:①是假命題,直線X、Y、Z位于正方體的三條共點(diǎn)棱時(shí)為反例,②③是真命題,④是假命題,平面X、Y、Z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí)為反例.

答案:②③

4.④

三、5.證明:(1)∵PA⊥底面ABCD,∴ADPD在平面ABCD內(nèi)的射影,

CD6ec8aac122bd4f6e平面ABCDCDAD,∴CDPD.

(2)取CD中點(diǎn)G,連EG、FG

E、F分別是AB、PC的中點(diǎn),∴EGADFGPD

∴平面EFG∥平面PAD,故EF∥平面PAD

(3)解:當(dāng)平面PCD與平面ABCD成45°角時(shí),直線EF⊥面PCD

證明:GCD中點(diǎn),則EGCD,由(1)知FGCD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角.即∠EGF=45°,從而得∠ADP=45°,AD=AP

由Rt△PAE≌Rt△CBE,得PE=CE

FPC的中點(diǎn),∴EFPC,由CDEG,CDFG,得CD⊥平面EFG,CDEFEFCD,故EF⊥平面PCD.

6.(1)證明:

6ec8aac122bd4f6e

同理EFFG,∴EFGH是平行四邊形

ABCD是正三棱錐,∴A在底面上的射影O是△BCD的中心,

DOBC,∴ADBC

HGEH,四邊形EFGH是矩形.

(2)作CPADP點(diǎn),連結(jié)BP,∵ADBC,∴AD⊥面BCP

HGAD,∴HG⊥面BCP,HG6ec8aac122bd4f6eEFGH.面BCP⊥面EFGH,

在Rt△APC中,∠CAP=30°,AC=a,∴AP=6ec8aac122bd4f6ea.

7.(1)證明:連結(jié)EM、MF,∵M、E分別是正三棱柱的棱ABAB1的中點(diǎn),

BB1ME,又BB16ec8aac122bd4f6e平面EFM,∴BB1∥平面EFM.

(2)證明:取BC的中點(diǎn)N,連結(jié)AN由正三棱柱得:ANBC,

BFFC=1∶3,∴FBN的中點(diǎn),故MFAN,

MFBC,而BCBB1,BB1ME.

MEBC,由于MFME=M,∴BC⊥平面EFM

EF?平面EFM,∴BCEF.

(3)解:取B1C1的中點(diǎn)O,連結(jié)A1O知,A1O⊥面BCC1B1,由點(diǎn)OB1D的垂線OQ,垂足為Q,連結(jié)A1Q,由三垂線定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan6ec8aac122bd4f6e.

8.(1)證明:連結(jié)A1C1、ACACBD交于點(diǎn)O,連結(jié)C1O

∵四邊形ABCD是菱形,∴ACBDBC=CD

又∵∠BCC1=∠DCC1,C1C是公共邊,∴△C1BC≌△C1DC,∴C1B=C1D

DO=OB,∴C1OBD,但ACBDACC1O=O

BD⊥平面AC1,又C1C6ec8aac122bd4f6e平面AC1,∴C1CBD.

 (2)解:由(1)知ACBD,C1OBD,∴∠C1OC是二面角αBDβ的平面角.

在△C1BC中,BC=2,C1C=6ec8aac122bd4f6e,∠BCC1=60°,∴C1B2=22+(6ec8aac122bd4f6e)2-2×2×6ec8aac122bd4f6e×cos60°=6ec8aac122bd4f6e.

∵∠OCB=30°,∴OB=6ec8aac122bd4f6e,BC=1,C1O=6ec8aac122bd4f6e,即C1O=C1C.

C1HOC,垂足為H,則HOC中點(diǎn)且OH=6ec8aac122bd4f6e,∴cosC1OC=6ec8aac122bd4f6e

(3)解:由(1)知BD⊥平面AC1,∵A1O6ec8aac122bd4f6e平面AC1,∴BDA1C,當(dāng)6ec8aac122bd4f6e=1時(shí),平行六面體的六個(gè)面是全等的菱形,同理可證BC1A1C,又∵BDBC1=B,∴A1C⊥平面C1BD.


同步練習(xí)冊答案