即二面角為. 查看更多

 

題目列表(包括答案和解析)

(2006•黃浦區(qū)二模)設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為
.
A
,若圓{(x,y)|(x-p)2+(x-q)2=r2}⊆
.
A
(r>0)
,求r的最大值.

查看答案和解析>>

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運(yùn)用

(1)中,借助于公式,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

精英家教網(wǎng)四棱錐S-ABCD中,底面ABCD為矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B為60°,且AB=SC=4.
(1)求證:平面SAB⊥平面ABCD;
(2)求三棱錐C-ASD的高(即以△SAD為底的三棱錐的高).

查看答案和解析>>

四棱錐S-ABCD中,底面ABCD為矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B為60°,且AB=SC=4.
(1)求證:平面SAB⊥平面ABCD;
(2)求三棱錐C-ASD的高(即以△SAD為底的三棱錐的高).
精英家教網(wǎng)

查看答案和解析>>

⊿ABC1與⊿ABC2均為等腰直角三角形,且腰長均為1,二面角C1-AB-C2為60o,則點(diǎn)C1與C2之間的距離可能是___________.(寫出二個(gè)可能值即可)

查看答案和解析>>


同步練習(xí)冊答案