AD⊥B1D------4分(2)解:連接DE.∵AA1=AB ∴四邊形A1ABB1是正方形.∴E是A1B的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數(shù)上的最小值

(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍

(3)證明對(duì)一切,都有成立

【解析】第一問(wèn)中利用

當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

第二問(wèn)中,,則設(shè),

單調(diào)遞增,,單調(diào)遞減,,因?yàn)閷?duì)一切恒成立, 

第三問(wèn)中問(wèn)題等價(jià)于證明,,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

解:(1)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),

                 …………4分

(2),則設(shè)

,單調(diào)遞增,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立,                                             …………9分

(3)問(wèn)題等價(jià)于證明,,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

 

查看答案和解析>>

(本小題8分)書(shū)架上有10本不同的書(shū),其中語(yǔ)文書(shū)4本,數(shù)學(xué)書(shū)3本,英語(yǔ)書(shū)3本,現(xiàn)從中取出3本書(shū).求:

( 1 )3本書(shū)中至少有1本是數(shù)學(xué)書(shū)的概率;

( 2 ) 3本書(shū)不全是同科目書(shū)的概率.

    解:(1)3本書(shū)中至少有1本是數(shù)學(xué)書(shū)的概率為

               (4分)

 或解                      (4分)

   (2)事件“3本書(shū)不全是同科目書(shū)”的對(duì)立事件是事件“3本書(shū)是同科目書(shū)”,

    而事件“3本書(shū)是同科目書(shū)”的概率為    (7分

   ∴3本書(shū)不全是同科目書(shū)的概率              (8分)

 

查看答案和解析>>

設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

 

查看答案和解析>>

如圖,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用有,得到

第二問(wèn)證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

第三問(wèn) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

則當(dāng)時(shí),由歸納假設(shè)及

解得不合題意,舍去)

即當(dāng)時(shí),命題成立.  …………………………………………4分

綜上所述,對(duì)所有,.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

已知數(shù)列中,,數(shù)列中,,且點(diǎn)在直線上。

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和;

(3)若,求數(shù)列的前項(xiàng)和;

【解析】第一問(wèn)中利用數(shù)列的遞推關(guān)系式

,因此得到數(shù)列的通項(xiàng)公式;

第二問(wèn)中, 即為:

即數(shù)列是以的等差數(shù)列

得到其前n項(xiàng)和。

第三問(wèn)中, 又   

,利用錯(cuò)位相減法得到。

解:(1)

  即數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列

                  ……4分

(2) 即為:

即數(shù)列是以的等差數(shù)列

         ……8分

(3) 又   

   ①         ②

①-  ②得到

  

 

查看答案和解析>>


同步練習(xí)冊(cè)答案