(2) 在線段BC上取點P,使BP=BC=,過P作PQ⊥CD于點Q, ∴ PQ⊥平面ACD 查看更多

 

題目列表(包括答案和解析)

(2012•棗莊二模)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:DF⊥平面PAF;
(2)在線段AP上取點G使AG=
14
AP,求證:EG∥平面PFD.

查看答案和解析>>

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:DF⊥平面PAF;
(2)在線段AP上取點G使AG=數(shù)學公式AP,求證:EG∥平面PFD.

查看答案和解析>>

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:DF⊥平面PAF;
(2)在線段AP上取點G使AG=AP,求證:EG∥平面PFD.

查看答案和解析>>

如圖,在平面直角坐標系中,O為坐標原點,點B(0,1)、且點A(a,0)(a≠0)是x軸上的動點,過點A作線段AB的垂線交y軸于點D,在直線AD上取點P,使AP=DA.

(1)求動點P的軌跡C的方程;

(2)點Q是直線y=-1上的一個動點,過點Q作軌跡C的兩條切線,切點分別為M、N,求證:QM⊥QN.

查看答案和解析>>

已知橢圓C:x2+2y2=8和點P(4,1),過P作直線交橢圓于A、B兩點,在線段AB上取點Q,使,=-λ,求動點Q的軌跡所在曲線的方程及點Q的橫坐標的取值范圍.

查看答案和解析>>


同步練習冊答案