設二面角.顯然 所以 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,AC=2,PA=2,E是PC上的一點,PE=2EC.

(Ⅰ)證明:PC⊥平面BED;

(Ⅱ)設二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】解法一:因為底面ABCD為菱形,所以BDAC,又

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。

(I)     證明PC平面BED;

(II)   設二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應的垂直關(guān)系和長度,并加以證明和求解。

解法一:因為底面ABCD為菱形,所以BDAC,又

【點評】試題從命題的角度來看,整體上題目與我們平時練習的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA,AB,AD兩兩互相垂直,已知AD∥BC,BC=2AD,E是PB的中點.
(1)求證:AE∥平面PCD;
(2)若平面PBC⊥平面PCD,PA=AB=6,BC=3,求點E到平面PCD的距離d;
(3)設二面角P-BC-D為45°,且PA=AD,求二面角B-PC-A的大。

查看答案和解析>>

精英家教網(wǎng) 如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,點N是BC的中點,點M在CC1上.設二面角A1-DN-M的大小為θ,
(1)當θ=90°時,求AM的長;
(2)當cosθ=
6
6
時,求CM的長.

查看答案和解析>>

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求證:AB⊥BC;
(2)若設二面角S-BC-A為45°,SA=BC,求二面角A-SC-B的大。

查看答案和解析>>


同步練習冊答案