(Ⅰ)證明:平面, 查看更多

 

題目列表(包括答案和解析)

平面內n條直線,其中任何兩條不平行,任何三條不共點.
(1)設這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個區(qū)域.

查看答案和解析>>

平面直角坐標系中,O為坐標原點,已知兩點M(1,-3)、N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點.
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是地面邊長的倍,P為側棱SD上的點。   

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

()選修4-1:幾何證明講

已知 ABC   中,AB=AC,  DABC外接圓劣弧上的點(不與點A,C重合),延長BD至E。

(1)       求證:AD的延長線平分CDE;

(2)       若BAC=30,ABC中BC邊上的高為2+,求ABC外接圓的面積。

查看答案和解析>>


同步練習冊答案