已知若過定點.以()為法向量的直線與過點以為法向量的直線相交于動點. 查看更多

 

題目列表(包括答案和解析)

已知,若過定點、以(λ∈R)為法向量的直線l1與過點為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F(xiàn),使得恒為定值;
(3)在(2)的條件下,若M,N是上的兩個動點,且,試問當|MN|取最小值時,向量是否平行,并說明理由.

查看答案和解析>>

(2009•浦東新區(qū)二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點B(0,-
2
)
c
i
為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F(xiàn),使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個動點,且
EM
FN
=0
,試問當|MN|取最小值時,向量
EM
+
FN
EF
是否平行,并說明理由.

查看答案和解析>>

已知直三棱柱中, , , 的交點, 若.

(1)求的長;  (2)求點到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

一、填空題

1.           2.         3.156         4. -          5.

6.     7.        8.(理)   (文)       9.0

10.     11.(理)     (文)

 

二、選擇題

12.C           13.B          14.(理)C   (文)B           15.B

 

三、解答題

16. 【解】(1)由已知:,   (2分)

,      (4分)

,故。              (6分)

(2)由,得,     (8分)

,。                   (10分)

。              (12分)

17.【解】

(理)設(shè)三次事件依次為,命中率分別為,

(1)令,則,∴,。      (6分)

 (2)。      (13分)

(文)拋物線的準線是,          (3分)

雙曲線的兩條漸近線是。 (6分)

    三條線為成得三角形區(qū)域的頂點為,,,(10分)

時,。              (13分)

18.【解】(1),。(4分)

   (2)令,

,(8分)

即三位市民各獲得140、100和110元折扣。(10分)

   (3)(元)。(16分)

19.【解】(1)直線的法向量,的方程:,

即為;…(2分)

直線的法向量,的方程:,

即為。 (4分)

(2)。   (6分)

設(shè)點的坐標為,由,得。(8分)

由橢圓的定義的知存在兩個定點,使得恒為定值4。

此時兩個定點為橢圓的兩個焦點。(10分)

(3)設(shè),,則,

,得。(12分)

;

當且僅當時,取最小值。(14分)

,故平行。(16分)

20.【解】(1)由,得。由,得第二行的公差,,∴。(2分)

,,得,∴。(4分)

(2);(6分)

。(10分)

(3),, 兩式相減,得。(12分)當時,。(13分)

時,顯然能被21整除;(14分)

②假設(shè)時,能被21整除,當時,

能被21整除。結(jié)論也成立。(17分)

由①、②可知,當是3的倍數(shù)時,能被21整除。(18分)


同步練習(xí)冊答案