答:截去的小正方形的邊長為. 查看更多

 

題目列表(包括答案和解析)

我們運用圖(I)圖中大正方形的面積可表示為(a+b)2,也可表示為c2+4×
1
2
ab,即(a+b)2=c2+4×
1
2
ab由此推導(dǎo)出一個重要的結(jié)論a2+b2=c2,這個重要的結(jié)論就是著名的“勾股定理”.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學(xué)規(guī)律和公式的方法,簡稱“無字證明”.
(1)請你用圖(Ⅱ)(2002年國際數(shù)字家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).
(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+y)2=x2+2xy+y2
(3)現(xiàn)有足夠多的邊長為x的小正方形,邊長為y的大正方形以及長為x寬為y的長方形,請你自己設(shè)計圖形的組合,用其面積表達式驗證:(x+y)(x+2y)=x2+3xy+2y2

查看答案和解析>>

精英家教網(wǎng)如圖所示,將邊長為a的小正方形和邊長為b的大正方形放在同一水平面上(b>a>0)
(1)用a、b表示陰影部分的面積;
(2)計算當(dāng)a=3,b=5時陰影部分的面積.

查看答案和解析>>

我們運用圖(I)圖中大正方形的面積可表示為(a+b)2,也可表示為c2+4×數(shù)學(xué)公式ab,即(a+b)2=c2+4×數(shù)學(xué)公式ab由此推導(dǎo)出一個重要的結(jié)論a2+b2=c2,這個重要的結(jié)論就是著名的“勾股定理”.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學(xué)規(guī)律和公式的方法,簡稱“無字證明”.
(1)請你用圖(Ⅱ)(2002年國際數(shù)字家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).
(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+y)2=x2+2xy+y2
(3)現(xiàn)有足夠多的邊長為x的小正方形,邊長為y的大正方形以及長為x寬為y的長方形,請你自己設(shè)計圖形的組合,用其面積表達式驗證:(x+y)(x+2y)=x2+3xy+2y2

查看答案和解析>>

如圖所示,將邊長為a的小正方形和邊長為b的大正方形放在同一水平面上(b>a>0)
(1)用a、b表示陰影部分的面積;
(2)計算當(dāng)a=3,b=5時陰影部分的面積.
精英家教網(wǎng)

查看答案和解析>>

如圖所示,將邊長為a的小正方形和邊長為b的大正方形放在同一水平面上(b>a>0)
(1)用a、b表示陰影部分的面積;
(2)計算當(dāng)a=3,b=5時陰影部分的面積.

查看答案和解析>>


同步練習(xí)冊答案