若點D與O不重合.連OC.在Rt△OCD中.∵OC>CD, ∴. 查看更多

 

題目列表(包括答案和解析)

如圖,AB是⊙的直徑,PAB上一點(與點A,B不重合),QPAB,垂足為P點,直線QA交⊙C點,過點C作⊙的切線交直線QP于點D.則△CDQ是等腰三角形.對上述命題證明如下:

證明:連接OC

OA=OC,∴∠A=1

CD切⊙C點,

∴∠OCD=90°,∴∠1+2=90°,∴∠A+2=90°

在Rt△QPA中,∠QPA=90°,

∴∠A+Q=90°,∴∠2=Q,∴DQ=DC

即△CDQ是等腰三角形.

問題:對上述命題,當點PBA的延長線上時,其他條件不變.

如圖所示,結(jié)論CDQ是等腰三角形還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

已知:如圖所示,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D,則△CDQ是等腰三角形.對上述命題證明如下:

證明:連接OC.

∵OA=OC,

∴∠A=∠1.

∵CD切⊙O于C點,

∴∠OCD=90°.

∴∠1+∠2=90°.

∴∠A+∠2=90°.

在Rt△QPA中,∠QPA=90°,

∴∠A+∠Q=90°.

∴∠2=∠Q.∴DQ=DC.

即△CDQ是等腰三角形

問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

已知:如圖所示,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D,則△CDQ是等腰三角形.對上述命題證明如下:

證明:連接OC.

∵OA=OC,

∴∠A=∠1.

∵CD切⊙O于C點,

∴∠OCD=90°.

∴∠1+∠2=90°.

∴∠A+∠2=90°.

在Rt△QPA中,∠QPA=90°,

∴∠A+∠Q=90°.

∴∠2=∠Q.∴DQ=DC.

即△CDQ是等腰三角形

問題:對上述命題,當點P在BA的延長線上時,其他條件不變,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

利用切線性質(zhì)證明等腰三角形

  如圖,已知:如圖(1),AB是⊙O的直徑,P是AB上的一點(與A、B不重合).QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D,則△CDQ是等腰三角形.對上述命題證明如下:

  證明:連結(jié)OC.

  ∵OA=OC,∴∠A=∠1.

  ∵CD切⊙O于C點,

  ∴∠OCD=90°,

  ∴∠1+∠2=90°,

  ∴∠A+∠2=90°.

  在Rt△QPA中,∠QPA=90°,

  ∴∠A+∠Q=90°,

  ∴∠2=∠Q.∴DQ=DC.

  即△CDQ是等腰三角形.

問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖(2)所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>


同步練習冊答案