橢圓C的中心在原點O.焦點在軸上.焦點到相應(yīng)準線的距離以及離心率均為.直線與軸交于點與橢圓C交于相異兩點A.B且.(1)求橢圓方程, 查看更多

 

題目列表(包括答案和解析)

橢圓C的中心在原點O,焦點在x軸,它的短軸長為2,過焦點與x軸垂直的直線與橢圓C相交于A,B兩點且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點N(1,0)的直線l交橢圓C于C、D兩點,交y軸于點P,若
PC
 1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

橢圓C的中心在原點O,焦點在x軸,它的短軸長為2,過焦點與x軸垂直的直線與橢圓C相交于A,B兩點且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點N(1,0)的直線l交橢圓C于C、D兩點,交y軸于點P,若
PC
1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

橢圓E的中心在原點O,焦點在軸上,其離心率, 過點C(-1,0)的直線與橢圓E相交于A、B兩點,且滿足點C分向量的比為2.

(1)用直線的斜率k ( k≠0 ) 表示△OAB的面積;(2)當△OAB的面積最大時,求橢圓E的方程。

查看答案和解析>>

橢圓E的中心在原點O,焦點在x軸上,離心率e=
2
3
,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

橢圓E的中心在原點O,焦點在x軸上,離心率e=,過點C(-1,0)的直線交橢圓于A,B兩點,且滿足,為常數(shù)。

(1)當直線的斜率k=1且時,求三角形OAB的面積.

(2)當三角形OAB的面積取得最大值時,求橢圓E的方程.

 

查看答案和解析>>

一、選擇題

1、B      

2、A    

3、D  ④少了“”這個條件,其余3個是正確的。

4、B      

5、C  取AC的中點O,則  四面體ABCD外接球的球心為O,半徑為 

6、D  設(shè)

7、D  由題意知,P點的軌跡為拋物線,以AB的中點為原點,AB所在直線為軸或軸可得四個標準方程

8、A 

9、A  ,1,-1是方程的兩根

10、C  若無最小值

  有最小值等價于

有大于0的最小值,即

11、C      

  直線AB的斜率為1

當過C點的切線與AB平行時,面積取最大值設(shè)此直線方程為

    

  C到AB距離為

12、C  的整數(shù)解為

這8個點兩兩所連的不過原點的直線有24條,過這8個點的切線有8條,每條直線確定了唯一的有序數(shù)對,共有32條。

二、填空題

13、 

 

14、    取AD中點E,連  為菱形,且

在側(cè)面

上的投影,為所求,

15、 0  

為偶函數(shù) 

16、 ②④   ①錯  ②對

 ③錯 

 當且僅當取等號  ④對

三、解答題

17、(1)

  即有最大值

(2)

18、(1)該愛好者得2分的概率為

(2)答對題的個數(shù)為,得分為,的可能取值為0,2,4,8

 

  

的分布列為

0

2

4

8

P

的數(shù)學期望為

以D為原點,DA、DC、DP分別為軸建系如圖,

19、(1)       

  為平面PAD的一個法向量

    

(2) 

(3)由(1)知為平面的一個法向量,

設(shè)平面的法向量為

 即二面角的余弦值為

20、(1)

 當   當

上單增

處取得極小值

    

的最大值為  最小值為

(2)由(1)知當

故對任意

只要對任意恒成立,即恒成立

    

實數(shù)的取值范圍是

21、(1)

  當

不是等比數(shù)列,當時, 數(shù)列是等比數(shù)列

且公比為2,

(2)由(1)知當

 1°

  2°

1°-2°及-

              

              

22、(1)設(shè)橢圓C的方程為

橢圓C的方程為

(2)由

  設(shè)與橢圓C交點為

消去得 

    

  由①得

    

綜上所述

 


同步練習冊答案