題目列表(包括答案和解析)
如圖,直線:
與直線
:
之間的陰影區(qū)域(不含邊界)記為
,其左半部分記為
,右半部分記為
.
(1)分別用不等式組表示和
;
(2)若區(qū)域中的動(dòng)點(diǎn)
到
,
的距離之積等于
,求點(diǎn)
的軌跡
的方程;
(05年北京卷)(14分)
如圖,直線>0)與直線
之間的陰影區(qū)域(不含邊界)記為
,其左半部分記為
,右半部分記為
.
(Ⅰ)分別有不等式組表示和
.
(Ⅱ)若區(qū)域中的動(dòng)點(diǎn)
到
的距離之積等于
,求點(diǎn)
的軌跡
的方程;
(Ⅲ)設(shè)不過原點(diǎn)的直線
與(Ⅱ)中的曲線
相交于
兩點(diǎn),且與
分別交于
兩點(diǎn).求證△
的重心與△
的重心重合.
(本小題滿分14分)
如圖4,在三棱柱中,△
是邊長為
的等邊三角形,
平面
,
,
分別是
,
的中點(diǎn).
(1)求證:∥平面
;
(2)若為
上的動(dòng)點(diǎn),當(dāng)
與平面
所成最大角的正切值為
時(shí),
求平面 與平面
所成二面角(銳角)的余弦值.
如圖,在三棱柱中,△
是邊長為
的等邊三角形,
平面
,
,
分別是
,
的中點(diǎn).
(1)求證:∥平面
;
(2)若為
上的動(dòng)點(diǎn),當(dāng)
與平面
所成最大角的正切值為
時(shí),求平面
與平面
所成二面角(銳角)的余弦值.
如圖,已知四棱錐,底面
為菱形,
平面
,
,
、
分別是
、
的中點(diǎn)。
(1)證明:;
(2)若
為
上的動(dòng)點(diǎn),
與平面
所成最大角的正切值為
,求銳二面角
的余弦值;
(3)在(2)的條件下,設(shè),求點(diǎn)
到平面
的距離。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com