題目列表(包括答案和解析)
已知,設(shè)和是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實(shí)數(shù)m的取值范圍是(4,8]
A.①②⑤③④ | B.③②④⑤① | C.②④③①⑤ | D.②⑤④③① |
命題方程有兩個(gè)不等的正實(shí)數(shù)根, 命題方程無(wú)實(shí)數(shù)根。若“或”為真命題,求的取值范圍。
【解析】本試題主要考查了命題的真值問(wèn)題,以及二次方程根的綜合運(yùn)用。
解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題
當(dāng)p為真命題時(shí),則,得;
當(dāng)q為真命題時(shí),則
當(dāng)q和p都是真命題時(shí),得
2.在兩個(gè)變量x,y進(jìn)行曲線回歸分析時(shí),有下列步驟:
① 對(duì)所求出的回歸方程作出解釋;②收集數(shù)據(jù)③求線性回歸方程;
④求相關(guān)系數(shù);⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是
A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③①
一、選擇題
1. D
解析:∵a3+a7+a11=3a7為常數(shù),
∴S13==13a7,也是常數(shù).
2. C
解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,
∴S9∶S3==1+q3+q6=1-+(-)2=.
3.A ,
又
4.D 數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。
5.B
6. D
解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;
當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;
當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.
7.A 僅②不需要分情況討論,即不需要用條件語(yǔ)句
8. D
9. D
解析:易知an=
∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).
10.A提示:依題意可得.
11.B,指輸入的數(shù)據(jù).
12.D
(法一)輾轉(zhuǎn)相除法:
∴是和的最大公約數(shù).
(法二)更相減損術(shù):
∴是和的最大公約數(shù).
二、填空題
13.
14.
當(dāng)時(shí),是正整數(shù)。
15.
解析:bn===a1,bn+1=a1,=(常數(shù)).
16.-6
三、解答題
17.解(1)
以3為公比的等比數(shù)列.
(2)由(1)知,..
不適合上式,
.
18.解:(1)an= (2).
19.解:(1),;
(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則 即
∴,,,得
∴p=r,矛盾. ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.
20.解:設(shè)未贈(zèng)禮品時(shí)的銷(xiāo)售量為a0個(gè),而贈(zèng)送禮品價(jià)值n元時(shí)銷(xiāo)售量為an個(gè),
,
又設(shè)銷(xiāo)售利潤(rùn)為數(shù)列,
當(dāng),
考察的單調(diào)性,
當(dāng)n=9或10時(shí),最大
答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤(rùn).
21.解析:(1)時(shí),
即
兩式相減:
即故有
。
數(shù)列為首項(xiàng)公比的等比數(shù)列。
(2)
則
又
(3)
①
而 ②
①-②得:
22.解:(1)b4=b1+3d 即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;
(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;
(3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.
當(dāng)n≤50時(shí),
當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)
=3775+(n-50)×2+=
∴綜上所述,.
w.w.w.k.s.5.u.c.o.m
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com