.兩端同乘以得: 查看更多

 

題目列表(包括答案和解析)

數(shù)列首項,前項和滿足等式(常數(shù),……)

(1)求證:為等比數(shù)列;

(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項公式.

(3)設(shè),求數(shù)列的前項和.

【解析】第一問利用由

兩式相減得

時,

從而  即,而

從而  故

第二問中,     又為等比數(shù)列,通項公式為

第三問中,

兩邊同乘以

利用錯位相減法得到和。

(1)由

兩式相減得

時,

從而   ………………3分

  即,而

從而  故

對任意,為常數(shù),即為等比數(shù)列………………5分

(2)    ……………………7分

為等比數(shù)列,通項公式為………………9分

(3)

兩邊同乘以

………………11分

兩式相減得

 

查看答案和解析>>

若數(shù)列an=(2n-1)×2n,求其前n項和為Sn=1×2+3×22+…+(2n-1)×2n時,可對上式左、右的兩邊同乘以2,得到2Sn=1×22+3×23+…+(2n-1)×2n+1,兩式相減并整理后,求得Sn=(2n-3)×2n+1+6.試類比此方法,求得bn=n2×2n的前n項和Tn=
(n2-2n+3)×2n+1-6
(n2-2n+3)×2n+1-6

查看答案和解析>>

先閱讀理解下面的例題,再按要求解答:
例題:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式組(1),得x>3,
解不等式組(2),得x<-3,
故(x+3)(x-3)>0的解集為x>3或x<-3,
即一元二次不等式x2-9>0的解集為x>3或x<-3.
問題:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

先閱讀理解下面的例題,再按要求解答:

例題:解一元二次不等式.

解:∵,

.

由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有

(1)            (2)

解不等式組(1),得

解不等式組(2),得,

的解集為,

即一元二次不等式的解集為.

    問題:求分式不等式的解集.

查看答案和解析>>

先閱讀理解下面的例題,再按要求解答:

例題:解一元二次不等式.

解:∵,

.

由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有

(1)            (2)

解不等式組(1),得,

解不等式組(2),得,w.w.w.k.s.5.u.c.o.m    

的解集為,

即一元二次不等式的解集為.

    問題:求分式不等式的解集.

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當q=1時,Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當q=-2時,Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當q=-時,Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1);

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

又設(shè)銷售利潤為數(shù)列,

考察的單調(diào)性,

當n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

。

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當n≤50時,

當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習冊答案