已知函數(shù)為常數(shù)) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為常數(shù)),且是函數(shù)的零點(diǎn).

(Ⅰ)求a的值,并求函數(shù)的最小正周期;

(Ⅱ)當(dāng)時(shí),求函數(shù)的值域,并寫出取得最大值時(shí)的x的值.

查看答案和解析>>

已知函數(shù)為常數(shù)),且是函數(shù) 的零點(diǎn). w.w.w.k.s.5.u.c.o.m    

(Ⅰ)求a的值,并求函數(shù)的最小正周期;

(Ⅱ)當(dāng)時(shí),求函數(shù)的值域,并寫出取得最大值時(shí)的x的值.

查看答案和解析>>

已知函數(shù)為常數(shù)).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)的單調(diào)遞增區(qū)間;

(3)若時(shí),的最小值為– 2 ,求a的值.

查看答案和解析>>

已知函數(shù)為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).

   (1)求a的值; (2)若上恒成立,求的取值范圍;

   (3)討論關(guān)于的根的個(gè)數(shù).

查看答案和解析>>

已知函數(shù)為常數(shù)).

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅲ)若時(shí),的最小值為– 2 ,求a的值.

 

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.     14.84      15.

16.

三、解答題

17.解:(1)…………………………2分

(2)由題意,令

∴從晚上1點(diǎn)至5點(diǎn),或上午13點(diǎn)至17點(diǎn),為所求時(shí)間,共8小時(shí),……12分

18.解:由框圖可知

 

(1)由題意可知,k=5時(shí),

(3)由(2)可得:

19.證明:(1)連結(jié)AC、BD、A1C1則AC、BD的交點(diǎn),O1

    1. ∴四邊形ACC1A1為平行四邊形,

      ∴四邊形A1O1CO為平行四邊形…………2分

      ∴A1O//CO1

      ∵A1O⊥平面ABCD

      ∴O1C⊥平面ABCD…………………………4分

      ∵O1C平面O1DC

      ∴存在點(diǎn)平面O1DC⊥平面ABCD……………5分

      (2)F為BC的三等分點(diǎn)B(靠近B)時(shí),有EF⊥BC……………………6分

      過(guò)點(diǎn)E作EH⊥AC于H,連FH、EF//A1O

      ∵平面A1AO⊥平面ABCD

      ∴EH⊥平面ABCD

      又BC平面ABCD   ∴BC⊥EH ①

      ∴HF//AB     ∴HF⊥BC, ②

      由①②知,BC⊥平面EFH

      ∵EF平面EFH    ∴EF⊥BC…………………………12分

      20.解:(1)當(dāng)0<x≤10時(shí),

      (2)①當(dāng)0<x≤10時(shí),

      ②當(dāng)x>10時(shí),

      (萬(wàn)元)

      (當(dāng)且僅當(dāng)時(shí)取等號(hào))……………………………………………………10分

      綜合①②知:當(dāng)x=9時(shí),y取最大值………………………………………………11分

      故當(dāng)年產(chǎn)量為9萬(wàn)件時(shí),服裝廠在這一品牌服裝的生產(chǎn)中獲年利潤(rùn)最大…………12分

      21.解:(1)

      又x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),則x1,x2的兩根,

      (2)由題意,

      22.解:(1)設(shè)橢圓方程為………………………………1分

      ………………………………………………3分

      ∴橢圓方程為…………………………………………………………4分

      (2)∵直線l平行于OM,且在y軸上的截距為m

      又KOM=

      ……………………………………………………5分

      ……………………………………6分

      ∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),

      (3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分

      設(shè)……………………10分

      ……………………………………………………10分

      故直線MA、MB與x軸始終圍成一個(gè)等腰三角形.……………………14分

       

       

       


      同步練習(xí)冊(cè)答案