A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

A.        B.     C.       D.不存在

查看答案和解析>>

     A          B           C            D

查看答案和解析>>

 (     )

    A.      B.      C.            D.

查看答案和解析>>

                                                           (    )

A.             B.               C.             D.

 

查看答案和解析>>

=(      )

A.              B.             C.             D.

 

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.800    14.    15.625    16.②④

三、解答題(本大題共6小題,滿分74分)

17.解

   (Ⅰ)由題意知

……………………3分

……………………4分

的夾角

……………………6分

(Ⅱ)

……………………9分

有最小值。

的最小值是……………………12分

18.解:

(Ⅰ)設(shè)“一次取出3個(gè)球得4分”的事件記為A,它表示取出的球中有1個(gè)紅球和2個(gè)黑球的情況

……………………4分

(Ⅱ)由題意,的可能取值為3、4、5、6。因?yàn)槭怯蟹呕氐厝∏,所以每次取到紅球的概率為……………………6分

的分布列為

3

4

5

6

P

……………………10分

    19.解:

    連接BD交AC于O,則BD⊥AC,

    連接A1O

    在△AA1O中,AA1=2,AO=1,

    ∠A1AO=60°

    ∴A1O2=AA12+AO2-2AA1?Aocos60°=3

    ∴AO2+A1O2=A12

    ∴A1O⊥AO,由于平面AA1C1C

    平面ABCD,

    所以A1O⊥底面ABCD

    ∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

    ……………………2分

    (Ⅰ)由于

    ∴BD⊥AA1……………………4分

      (Ⅱ)由于OB⊥平面AA1C1C

    ∴平面AA1C1C的法向量

    設(shè)⊥平面AA1D

    得到……………………6分

    所以二面角D―A1A―C的平面角的余弦值是……………………8分

    (Ⅲ)假設(shè)在直線CC1上存在點(diǎn)P,使BP//平面DA1C1

    設(shè)

    ……………………9分

    設(shè)

    設(shè)

    得到……………………10分

    又因?yàn)?sub>平面DA1C1

    ?

    即點(diǎn)P在C1C的延長(zhǎng)線上且使C1C=CP……………………12分

    法二:在A1作A1O⊥AC于點(diǎn)O,由于平面AA1C­1C⊥平面

    ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

    又底面為菱形,所以AC⊥BD

        ……………………4分

        (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

        ∴AO=AA1?cos60°=1

        所以O(shè)是AC的中點(diǎn),由于底面ABCD為菱形,所以

        O也是BD中點(diǎn)

        由(Ⅰ)可知DO⊥平面AA1C

        過(guò)O作OE⊥AA1于E點(diǎn),連接OE,則AA1⊥DE

        則∠DEO為二面角D―AA1―C的平面角

        ……………………6分

        在菱形ABCD中,AB=2,∠ABC=60°

        ∴AC=AB=BC=2

        ∴AO=1,DO=

        在Rt△AEO中,OE=OA?sin∠EAO=

        DE=

        ∴cos∠DEO=

        ∴二面角D―A1A―C的平面角的余弦值是……………………8分

        (Ⅲ)存在這樣的點(diǎn)P

        連接B1C,因?yàn)锳1B1ABDC

        ∴四邊形A1B1CD為平行四邊形。

        ∴A1D//B1C

        在C1C的延長(zhǎng)線上取點(diǎn)P,使C1C=CP,連接BP……………………10分

        因B­1­BCC1,……………………12分

        ∴BB1CP

        ∴四邊形BB1CP為平行四邊形

        則BP//B1C

        ∴BP//A1D

        ∴BP//平面DA1C1

        20.解:

        (Ⅰ)

        ……………………2分

        當(dāng)是增函數(shù)

        當(dāng)是減函數(shù)……………………4分

        ……………………6分

        (Ⅲ)(i)當(dāng)時(shí),,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

        ……………………7分

        又當(dāng)時(shí),所以的圖象在上有公共點(diǎn),等價(jià)于…………8分

        解得…………………9分

        (ii)當(dāng)時(shí),上是增函數(shù),

        所以原問(wèn)題等價(jià)于

        ∴無(wú)解………………11分

         

         


        同步練習(xí)冊(cè)答案