已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為( �。�

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

一.選擇題   1-5   6-10   11-12     BBDBC  CBACC  DA

 

二.填空題   13. 1 ;   14. 2;    15. ;   16.  -1

 

三、解答題

17.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.

由f()=,得+-=,∴b=1,…………2分

∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).…………4分

(Ⅱ)由f(x)=sin(2x+).

又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的單調(diào)遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),

∴函數(shù)f(x)的圖象右移后對(duì)應(yīng)的函數(shù)可成為奇函數(shù).…………12分

 

18.解:(I)一次射擊后,三人射中目標(biāo)分別記為事件A1,A2,A3,

由題意知A1,A2,A3互相獨(dú)立,且,…………2分

.…………4分

∴一次射擊后,三人都射中目標(biāo)的概率是.…………5分

(Ⅱ)證明:一次射擊后,射中目標(biāo)的次數(shù)可能取值為0、1、2、3,相應(yīng)的沒(méi)有射中目標(biāo)的的次數(shù)可能取值為3、2、1、0,所以可能取值為1、3, …………6分

)+

 ………8分

,………10分

.………12分

19.解:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

    ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

    ∴與平面A1C1CA所成角,

.

與平面A1C1CA所成角為.…………3分

(Ⅱ)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,連結(jié)BM,

    ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

    ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn),

    ∴CG=2,DC=1 在直角三角形CDG中,.……7分

    即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)取線段AC的中點(diǎn)F,則EF⊥平面A1BD.……………9分

證明如下:

∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,……………10分

∵EF在平面A1C1CA內(nèi)的射影為C1F,當(dāng)F為AC的中點(diǎn)時(shí),

C1F⊥A1D,∴EF⊥A1D.

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

文本框:  解法二:

(Ⅰ)同解法一……………………3分

(Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,

AC⊥CB,D、E分別為C1C、B1C1的中點(diǎn).

建立如圖所示的坐標(biāo)系得:

C(0,0,0),B(2,0,0),A(0,2,0),

C1(0,0,2), B1(2,0,2), A­1(0,2,2),

D(0,0,1), E(1,0,2).………………6分

,設(shè)平面A1BD的法向量為,

  .…………6分

平面ACC1A1­的法向量為=(1,0,0),.………7分

即二面角B―A1D―A的大小為.…………………8分

(Ⅲ)F為AC上的點(diǎn),故可設(shè)其坐標(biāo)為(0,,0),∴.

由(Ⅱ)知是平面A1BD的一個(gè)法向量,

欲使EF⊥平面A1BD,當(dāng)且僅當(dāng)//.……10分

,∴當(dāng)F為AC的中點(diǎn)時(shí),EF⊥平面A1BD.…………………12分

 

20.解:(Ⅰ) 據(jù)題意: ,

.

   兩式相減,有:,…………3分

 .…………4分

又由=解得. …………5分

是以為首項(xiàng),為公比的等比數(shù)列,∴.…………6分

 (Ⅱ)

 ………8分

…………12分

 

21.解: (Ⅰ)依題意,由余弦定理得:

, ……2分

  

.

,即.  …………4分

(當(dāng)動(dòng)點(diǎn)與兩定點(diǎn)共線時(shí)也符合上述結(jié)論)

動(dòng)點(diǎn)的軌跡Q是以為焦點(diǎn),實(shí)軸長(zhǎng)為的雙曲線.其方程為.………6分

(Ⅱ)假設(shè)存在定點(diǎn),使為常數(shù).

(1)當(dāng)直線不與軸垂直時(shí),

設(shè)直線的方程為,代入整理得:

.…………7分

由題意知,

設(shè),,則,.…………8分

于是,   …………9分

.…………10分

要使是與無(wú)關(guān)的常數(shù),當(dāng)且僅當(dāng),此時(shí).…11分

(2)當(dāng)直線軸垂直時(shí),可得點(diǎn),,

當(dāng)時(shí),.   

故在軸上存在定點(diǎn),使為常數(shù).…………12分

 

22.解:(Ⅰ)………1分

       

        同理,令

        ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.……………………3分

        由此可知…………………………………………4分

   (Ⅱ)由(I)可知當(dāng)時(shí),有,

        即.

    .……………………………………………………………………7分

  (Ⅲ) 設(shè)函數(shù)…………………………………10分

       

        ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

        ……………………………………14分

 


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹