12.如圖.M是以A.B為焦點(diǎn)的雙曲線右支上任一點(diǎn).若點(diǎn)M到點(diǎn)C(3.1)與點(diǎn)B的距離之和為S.則S的取值范圍是 查看更多

 

題目列表(包括答案和解析)

如圖,M是以A、B為焦點(diǎn)的雙曲線右支上任一點(diǎn),若點(diǎn)M到點(diǎn)C(3,1)與點(diǎn)B的距離之和為S,則S的取值范圍是                                                              

A.                                       B.

C.                       D.

查看答案和解析>>

如圖,M是以A、B為焦點(diǎn)的雙曲線右支上任一點(diǎn),若點(diǎn)M到點(diǎn)C(3,1)與點(diǎn)B的距離之和為S,則S的取值范圍是                                                              

A.                                       B.

C.                       D.

查看答案和解析>>

(08年福州質(zhì)檢理)如圖,M是以A、B為焦點(diǎn)的雙曲線右支上任一點(diǎn),若點(diǎn)M到點(diǎn)C(3,1)與點(diǎn)B的距離之和為S,則S的取值范圍是                                                  (    )

       A.                             B.

       C.                 D.

查看答案和解析>>

精英家教網(wǎng)如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且
F2M
MP
=0
.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2M的中點(diǎn),得|OM|=
1
2
|NF1|=…=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且
F2M
MP
=0
.則|OM|的取值范圍是
 

查看答案和解析>>

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的左右焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且F2M⊥MP.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=
1
2
|NF1|,…,|OM|=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,b2+c2=a2,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的左右焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且F2M⊥MP,則|OM|的取值范圍是
(0,c)
(0,c)

查看答案和解析>>

一、選擇題

  • 20080422

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)……………………3分

    ……………………6分

    (2)因?yàn)?sub>

    ………………9分

    ……………………12分

    文本框:  18.方法一:

    (1)證明:連結(jié)BD,

    ∵D分別是AC的中點(diǎn),PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2,

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=,

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC,

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點(diǎn)E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點(diǎn)E,連結(jié)DE、PE,

    過點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

    <mark id="3oqsk"><dl id="3oqsk"></dl></mark>

      DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

      則D(0,0,0),P(0,0,),

      E(),B=(

      設(shè)上平面PAB的一個(gè)法向量,

      則由

      這時(shí),……………………6分

      顯然,是平面ABC的一個(gè)法向量.

      ∴二面角P―AB―C的大小是……………………8分

      (3)解:

      設(shè)平面PBC的一個(gè)法向量,

      是平面PBC的一個(gè)法向量……………………10分

      ∴點(diǎn)E到平面PBC的距離為………………12分

      19.解:(1)由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷售總金額為:

         (2)

      ……………………3分

      當(dāng)

      當(dāng)x=50時(shí),

      即該噸產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷售總最大.……………………6分

      (2)由(1)

      如果上漲價(jià)格能使銷假售總金額增加,

      則有……………………8分

      即x>0時(shí),

      注意到m>0

        ∴   ∴

      ∴m的取值范圍是(0,1)…………………………12分

      20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

      當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

      當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

      由已知可得………5分

      解得無意義.

      因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

      (2)由已知可設(shè)直線l的方程為……………………8分

      則AB所在直線為……………………9分

      代入拋物線方程………………①

      的中點(diǎn)為

      代入直線l的方程得:………………10分

      又∵對(duì)于①式有:

      解得m>-1,

      l在y軸上截距的取值范圍為(3,+)……………………12分

      21.解:(1)在………………1分

      當(dāng)兩式相減得:

      整理得:……………………3分

      當(dāng)時(shí),,滿足上式,

      (2)由(1)知

      ………………8分

      ……………………10分

      …………………………12分

      22.解:(1)…………………………1分

      是R上的增函數(shù),故在R上恒成立,

      在R上恒成立,……………………2分

      …………3分

      故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

      ∴當(dāng)

      的最小值………………6分

      亦是R上的增函數(shù)。

      故知a的取值范圍是……………………7分

      (2)……………………8分

      ①當(dāng)a=0時(shí),上單調(diào)遞增;…………10分

      可知

      ②當(dāng)

      即函數(shù)上單調(diào)遞增;………………12分

      ③當(dāng)時(shí),有

      即函數(shù)上單調(diào)遞增。………………14分

       


      同步練習(xí)冊(cè)答案