1.知識(shí)與技能 (1)明確函數(shù)的三種表示方法, (2)會(huì)根據(jù)不同實(shí)際情境選擇合適的方法表示函數(shù), (3)通過(guò)具體實(shí)例.了解簡(jiǎn)單的分段函數(shù)及應(yīng)用. 查看更多

 

題目列表(包括答案和解析)

為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競(jìng)賽.該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) 頻數(shù)(人數(shù)) 頻率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   計(jì) p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績(jī)不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場(chǎng)順序.已知高一•二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場(chǎng)的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一•二班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競(jìng)賽.該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) 頻數(shù)(人數(shù)) 頻率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   計(jì) p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績(jī)不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場(chǎng)順序.已知高一•二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場(chǎng)的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一•二班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(1)利用向量有關(guān)知識(shí)與方法證明兩角差的余弦公式:Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;
(2)由Cα-β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>

(本題滿分14分).有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體形無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)邊長(zhǎng)為的小正方形,剰余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng).

(1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的的容積V1(用表示);

(2)經(jīng)過(guò)設(shè)計(jì)(1)的方法,計(jì)算得到當(dāng)時(shí),Vl取最大值,為了材料浪費(fèi)最少,工人師傅還實(shí)踐出了其它焊接方法,請(qǐng)寫(xiě)出與(1)的焊接方法更佳(使材料浪費(fèi)最少,容積比Vl大)的設(shè)計(jì)方案,并計(jì)算利用你的設(shè)計(jì)方案所得到的容器的容積。

 

查看答案和解析>>

有時(shí)可用函數(shù)

      

述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度.其中表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān)

(1)證明:當(dāng)x 7時(shí),掌握程度的增長(zhǎng)量f(x+1)- f(x)總是下降;

(2)根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為(115,121],(121,127]

(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案