(2)過橢圓C 的右焦點作直線交橢圓C于.兩點.交軸于點.若. .求證:. 泉州七中09屆高三第三次月考數(shù)學試卷答案題號123456789101112答案DCCBABBAAABC 查看更多

 

題目列表(包括答案和解析)

過橢圓C:
x2
6
+
y2
2
=1
的右焦點F作斜率為k(k>0)的直線l與橢圓交于A、B兩點,且坐標原點O到直線l的距離d滿足:0<d<
2
3
3
.

(I)證明點A和點B分別在第一、三象限;
(II)若
OA
OB
>-
4
3
,求k
的取值范圍.

查看答案和解析>>

過橢圓C:
x2
4
+y=1
的右焦點作一直線l交橢圓C于M、N兩點,且M、N到直線x=
4
3
的距離之和為
3
,求直線l的方程.

查看答案和解析>>

過橢圓C:
x2
6
+
y2
2
=1
的右焦點F作斜率為k(k>0)的直線l與橢圓交于A、B兩點,且坐標原點O到直線l的距離d滿足:0<d<
2
3
3
.

(I)證明點A和點B分別在第一、三象限;
(II)若
OA
OB
>-
4
3
,求k
的取值范圍.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
兩漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又設l與l2交于點P,l與C兩交點自上而下依次為A、B;
(1)當l1與l2夾角為
π
3
,雙曲線焦距為4時,求橢圓C的方程及其離心率;
(2)若
FA
AP
,求λ的最小值.

查看答案和解析>>

橢圓C:,雙曲線兩漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又設l與l2交于點P,l與C兩交點自上而下依次為A、B;
(1)當l1與l2夾角為,雙曲線焦距為4時,求橢圓C的方程及其離心率;
(2)若,求λ的最小值.

查看答案和解析>>


同步練習冊答案