已知平面,為垂足.為斜線在平面內(nèi)的射影....則和平面所成的角為C A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當(dāng)△ABP的面積最大時點P的坐標(biāo).

查看答案和解析>>

已知兩點M(-2,0),N(2,0),點P為坐標(biāo)平面內(nèi)的動點,且滿足||||+·=0.

(1)求點P的軌跡C的方程;

(2)設(shè)過點N的直線l的斜率為k,且與曲線C相交于點S、T,若S、T兩點只在第二象限內(nèi)運動,線段ST的垂直平分線交x軸于Q點,求Q點橫坐標(biāo)的取值范圍.

 

查看答案和解析>>

已知兩點M(-2,0),N(2,0),點P為坐標(biāo)平面內(nèi)的動點,且滿足||||+·=0.
(1)求點P的軌跡C的方程;
(2)設(shè)過點N的直線l的斜率為k,且與曲線C相交于點S、T,若S、T兩點只在第二象限內(nèi)運動,線段ST的垂直平分線交x軸于Q點,求Q點橫坐標(biāo)的取值范圍.

查看答案和解析>>

已知兩點M(-2,0),N(2,0),點P為坐標(biāo)平面內(nèi)的動點,且滿足||||+·=0.
(1)求點P的軌跡C的方程;
(2)設(shè)過點N的直線l的斜率為k,且與曲線C相交于點S、T,若S、T兩點只在第二象限內(nèi)運動,線段ST的垂直平分線交x軸于Q點,求Q點橫坐標(biāo)的取值范圍.

查看答案和解析>>

已知AO是平面α的斜線,A是斜足,OB垂直α,B為垂足,則直線AB是斜線在平面α內(nèi)的射影,設(shè)AC是α內(nèi)的任一條直線.

查看答案和解析>>


同步練習(xí)冊答案