15.已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足S1>1.且6Sn=(an+1)(an+2).n∈N+. (1)求{an}的通項公式, (2)設數(shù)列{bn}滿足an(2bn-1)=1.并記Tn為{bn}的前n項和.求證:3Tn+1>log2(an+3).n∈N*. (1)解:由a1=S1=(a1+1)(a1+2).解得a1=1或a1=2.由已知a1=S1>1.因此a1=2. 又由an+1=Sn+1-Sn=(an+1+1)(an+1+2)-(an+1)(an+2). 得(an+1+an)(an+1-an-3)=0. 即an+1-an-3=0或an+1=-an.因an>0.故an+1=-an不成立.舍去. 因此an+1-an=3.從而{an}是公差為3.首項為2的等差數(shù)列.故{an}的通項為an=3n-1. (2)證法一:由an(2bn-1)=1可解得 bn=log2=log2, 從而Tn=b1+b2+-+bn =log2. 因此3Tn+1-log2(an+3) =log2. 令f(n)=3·. 則=·3 =. 因(3n+3)3-(3n+5)(3n+2)2=9n+7>0.故f(n+1)>f(n). 特別地f(n)≥f(1)=>1.從而3Tn+1-log2(an+3)=log2f(n)>0.即3Tn+1>log2(an+3). 證法二:同證法一求得bn及Tn. 由二項式定理知.當c>0時.不等式(1+c)3>1+3c成立. 由此不等式有 3Tn+1=log22(1+)3(1+)3-(1+)3 >log22 =log22···-·=log2(3n+2)=log2(an+3). 證法三:同證法一求得bn及Tn. 令An=··-·.Bn=··-·. Cn=··-·. 因>>.因此A>AnBnCn=. 從而3Tn+1=log223=log22A>log22AnBnCn=log2(3n+2)=log2(an+3). 證法四:同證法一求得bn及Tn. 下面用數(shù)學歸納法證明:3Tn+1>log2(an+3). 當n=1時.3T1+1=log2.log2(a1+3)=log25. 因此3T1+1>log2(a1+3).結論成立. 假設結論當n=k時成立.即3Tk+1>log2(ak+3). 則當n=k+1時. 3Tk+1+1-log2(ak+1+3) =3Tk+1+3bk+1-log2(ak+1+3) >log2(ak+3)-log2(ak+1+3)+3bk+1 =log2. 因(3k+3)3-(3k+5)(3k+2)2=9k+7>0.故 log2>0. 從而3Tk+1+1>log2(ak+1+3).這就是說.當n=k+1時結論也成立. 綜上3Tn+1>log2(an+3)對任何n∈N*成立. 查看更多

 

題目列表(包括答案和解析)

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n,點(an,Sn)都在直線2x-y-1=0上.
(1)求數(shù)列{an}的通項公式;
(2)若an2=2bn,設cn=
bnan
,求{cn}的前n項和Tn

查看答案和解析>>

已知各項均為正數(shù)的數(shù)列{an}的前n項和滿足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項公式;
(2)設數(shù)列{bn}滿足an(2bn-1)=1,并記Tn為{bn}的前n項和,求證:3Tn+1>log2(an+3),n∈N*

查看答案和解析>>

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,an=2
Sn
-1(n∈N*).
(1)求an的通項公式;
(2)設Tn=
1
S1
+
1
S2
+…+
1
Sn
,Pn=
1
S1S2
+
1
S2S3
+…+
1
SnSn_+1
,求2Tn-Pn,并確定最小的正整數(shù)n,使2Tn-Pn
13
5

查看答案和解析>>

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn,an,1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若an2=2-bn,設Cn=
bnan
求數(shù)列{Cn}的前項和Tn

查看答案和解析>>

已知各項均為正數(shù)的數(shù)列{an}的前n項和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*
(Ⅰ)求a1;
(Ⅱ)證明{an}是等差數(shù)列并求數(shù)列的通項公式.

查看答案和解析>>


同步練習冊答案