題目列表(包括答案和解析)
已知R.
(1)求函數(shù)的最大值,并指出此時的值.
(2)若,求的值.
【解析】本試題主要考查了三角函數(shù)的性質的運用。(1)中,三角函數(shù)先化簡=,然后利用是,函數(shù)取得最大值(2)中,結合(1)中的結論,然后由
得,兩邊平方得即,因此
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=
(Ⅰ)求角B的大小;
(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1), 有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.
已知α為第二象限角,,則cos2α=
(A) (B) (C) (D)
【解析】因為所以兩邊平方得,所以,因為已知α為第二象限角,所以,,所以=,選A.
1+
|
1+
|
1+x |
1+
| ||
2 |
1 | ||
2+
|
2 |
2 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com