二次函數(shù)與一元一次方程.一元二次不等式之間的內(nèi)在聯(lián)系及相應(yīng)轉(zhuǎn)化 ①的圖像與x軸交點的橫坐標是方程f(x)=0的實根, ②當(dāng) 時.f(x)>0恒成立.當(dāng) 時.f(x)0恒成立.結(jié)論成立的條件是. 查看更多

 

題目列表(包括答案和解析)

(1)寫出一元二次方程ax2+bx+c=0有一個正根和一個負根的充要條件
(2)二次函數(shù)y=ax2+bx+c的系數(shù)在集合A={-2,-1,0,1,2,3}中取值,且a,b,c互不相等,則共有多少條拋物線與x
軸的正、負半軸都有交點?
(3)在(2)的條件下,任取一條拋物線它恰與x軸的正、負半軸都有交點的概 率為多少?
(要求列出算式并寫出結(jié)果,若無算式或算式不正確均不給分)

查看答案和解析>>

(1)寫出一元二次方程ax2+bx+c=0有一個正根和一個負根的充要條件
(2)二次函數(shù)y=ax2+bx+c的系數(shù)在集合A={-2,-1,0,1,2,3}中取值,且a,b,c互不相等,則共有多少條拋物線與x
軸的正、負半軸都有交點?
(3)在(2)的條件下,任取一條拋物線它恰與x軸的正、負半軸都有交點的概 率為多少?
(要求列出算式并寫出結(jié)果,若無算式或算式不正確均不給分)

查看答案和解析>>

研究、體會一元二次不等式與二次函數(shù)、一元二次方程的密切聯(lián)系。

查看答案和解析>>

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-,x1•x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:

AB=|x1-x2|=

參考以上定理和結(jié)論,解答下列問題:

設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.

(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;

(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.

 

查看答案和解析>>

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-,x1•x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:
AB=|x1-x2|=

參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.

查看答案和解析>>


同步練習(xí)冊答案