題目列表(包括答案和解析)
函數(shù)在[0,π]上的單調遞增區(qū)間是________.
π |
2 |
設f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調遞增,在[x*,1]上單調遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為或,在所得的含峰區(qū)間內選取,由與或與類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)
必修
一、填空題
1、8 2、 3、2|P| 4、 5、向左移,在把各點的橫坐標伸長到原來的3倍
6、18 7、120度 8、 9、 10、②④ 11、 12、 13、 14、
二、解答題
15.解:(Ⅰ)=.………… 4分
由,得.
∴函數(shù)的單調增區(qū)間為 .………… 7分
(Ⅱ)由,得.
∴. ………………………………………… 10分
∴,或,
即或.
∵,∴. …………………………………………… 14分
16.解:(Ⅰ)n≥2時,. ………………… 4分
n=1時,,適合上式,
∴. ………………… 5分
(Ⅱ),. ………………… 8分
即.
∴數(shù)列是首項為4、公比為2的等比數(shù)列. ………………… 10分
,∴.……………… 12分
Tn==. ………………… 14分
17、⑴ ⑵ ⑶不能
18、⑴
⑵=1時,的最大值為20200,=10時,的最小值為12100。
19、⑴易知AB恒過橢圓的右焦點F(,0) ⑵ S= ⑶存在。
20、⑴
⑵或
⑶(,)
附加題選修參考答案
1、⑴BB= , ⑵
2、⑴ ⑵ ,, ,EX=1
3、
4、⑴ ⑵ MN=2
5、⑴特征值為2和3 ,對應的特征向量分別為及,
⑵ ,橢圓在矩陣的作用下對應得新方程為
6、提示:,然后用基本不等式或柯西不等式即可。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com