答案:x 解法一:由f(x)在區(qū)間[0.1]上的圖象為線段AB.可得: f(x)=-x+2.x∈[0.1].因f(x)為偶函數(shù).則任取x∈[-1.0].-x∈[0.1].f(x)=f(-x)=-(-x)+2=x+2. x∈[-1.0].又f(x)是最小正周期為2的函數(shù).若任取x∈[1.2].則x-2∈[-1.0].f(x)=f(x-2)=(x-2)+2=x.x∈[1.2].所以在區(qū)間[1.2]上.f(x)=x. 解法二:由函數(shù)f(x)是最小正周期為2的偶函數(shù).它在區(qū)間[0.1]上的圖象為線段AB.描出f(x)在區(qū)間[-1.0]和[1.2]上的圖象如圖2-20.可得f(x)在區(qū)間[1.2]上的圖象為線段BC.其中B(1.1).C(2.2).所以在區(qū)間[1.2]上.f(x)=x. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調(diào)遞增,又    

① 當,即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

⊙O1和⊙O2的極坐標方程分別為,

⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;

⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標方程.

【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用

(1)中,借助于公式,將極坐標方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標方程.

同理為⊙O2的直角坐標方程.

(II)解法一:由解得

即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x

 

查看答案和解析>>

(本小題滿分12分)

閱讀下面內(nèi)容,思考后做兩道小題。

在一節(jié)數(shù)學課上,老師給出一道題,讓同學們先解,題目是這樣的:

已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。

題目給出后,同學們馬上投入緊張的解答中,結果很快出來了,大家解出的結果有很多個,下面是其中甲、乙兩個同學的解法:

甲同學的解法:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即0≤b≤2               ③

② ×(-1)+①得:-1≤k-b≤1             ④

④+②得:0≤2k≤4                                               ⑤

③+⑤得:0≤2k+b≤6。

又∵f(2)=2k+b

∴0≤f(2)≤6,0≤Z≤6

      乙同學的解法是:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即:0≤b≤2                        ③

①-②得:2≤2k≤2,即:1≤k≤1

∴k=1,

∵f(2)=2k+b=1+b

由③得:1≤f(2)≤3

∴:1≤Z≤3

(Ⅰ)如果課堂上老師讓你對甲、乙兩同學的解法給以評價,你如何評價?

(Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。

查看答案和解析>>

精英家教網(wǎng)某先生居住在城鎮(zhèn)的A處,準備開車到單位B處上班,若該地各路段發(fā)生堵車事件都是獨立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如如圖所示.(例如:A→C→D算作兩個路段:路段AC發(fā)生堵車事件的概率為
1
10
,路段CD發(fā)生堵車事件的概率為
1
15
).
(1)請你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最。
(2)若記路線A→C→F→B中遇到堵車次數(shù)為隨機變量X,求X的概率分布.

查看答案和解析>>

現(xiàn)在小型轎車慢慢進入百姓家庭,但是另一個問題相繼暴露出來--堵車.李先生居住在城市的A處,準備開車到B處上班,若該地各路段發(fā)生堵車事件是相互獨立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖所示(例如A→C→D并作兩個路段:路段AC發(fā)生堵車事件的概率是
1
10
,路段CD發(fā)生堵車事件概率是
1
15
).
(1)請你為李先生選擇一條由A到B的路線,使得沿途經(jīng)過的路口盡可能少,且發(fā)生堵車的概率最小;
(2)若該路線A→C→F→B中遇到堵車的次數(shù)為隨機變量X,求X的數(shù)學期望.

查看答案和解析>>


同步練習冊答案